Cloning and analysis of a cDNA encoding mammalian arginyl-tRNA synthetase, a component of the multisynthetase complex with a hydrophobic N-terminal extension. 1993

M Lazard, and M Mirande
Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.

In mammalian cells, the nine aminoacyl-tRNA synthetases (aaRS) specific for the amino acids (aa) Glu, Pro, Ile, Leu, Met, Gln, Lys, Arg and Asp are associated within a multienzyme complex. Arginyl-tRNA synthetase (ArgRS) is characterized by the occurrence of two structurally distinct forms of that enzyme: a complexed (approximately 74 kDa) and a free (approximately 60 kDa) form. The cDNA encoding the 74-kDa species of ArgRS from Chinese hamster ovary cells has been isolated and sequenced. The deduced aa sequence shows 38% identity to the homologous bacterial enzyme but displays an N-terminal polypeptide extension composed of 73 aa, which is absent in the free form of mammalian ArgRS. Two regions of this extension are predicted to be alpha-helical, leading to the clustering of Leu and Ile residues on one side of the helices. This suggests that the N-terminal domain is involved in the assembly of the 74-kDa species of ArgRS within the multisynthetase complex through hydrophobic interactions. By using the isolated cDNA, a Northern blot analysis showed a single mRNA species. Thus, there is a possibility that the free and complexed forms of ArgRS are encoded by the same gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001126 Arginine-tRNA Ligase An enzyme that activates arginine with its specific transfer RNA. EC 6.1.1.19. Arginyl T RNA Synthetase,Arg-tRNA Ligase,Arginyl-tRNA Synthetase,Arg tRNA Ligase,Arginine tRNA Ligase,Arginyl tRNA Synthetase,Ligase, Arg-tRNA,Ligase, Arginine-tRNA,Synthetase, Arginyl-tRNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

M Lazard, and M Mirande
October 1991, Biochemical and biophysical research communications,
M Lazard, and M Mirande
January 1998, Acta biochimica Polonica,
M Lazard, and M Mirande
March 2002, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
M Lazard, and M Mirande
January 2002, The Journal of biological chemistry,
Copied contents to your clipboard!