Sequence and organization of the human N-formyl peptide receptor-encoding gene. 1993

P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.

The human FPR1 gene encodes the N-formyl peptide receptor, a G protein-coupled receptor (GPCR) that mediates the activation of mature myeloid cells by bacterial N-formyl oligopeptides. To investigate the molecular basis for myeloid-specific production of this receptor, we have cloned and sequenced FPR1. The gene is organized into three exons and two introns that span 6 kb. The coding block lacks introns. Yet, the transcription start point (tsp) is separated from the start codon by 4902 bp consisting of three exons and two large introns. Two mRNAs are produced by alternative splicing of exon 2 in HL-60 neutrophils and normal blood monocytes. The region 5' to the tsp contains three pyrimidine-rich segments, a feature that has been observed in other myeloid-specific genes. One complete Alu repeat is found in each intron and in the 3'-flanking region 317 bp downstream of the polyadenylation signal. Thus, FPR1 is a small myeloid-specific gene that is expressed as two alternatively spliced mRNAs encoding the same protein.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
March 1992, Biochemistry international,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
May 1990, Biochemical and biophysical research communications,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
February 1990, Gene,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
February 1986, The Journal of biological chemistry,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
January 1982, Journal of cellular biochemistry,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
September 1992, Gene,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
May 1992, Brain research. Molecular brain research,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
February 1999, Biochemistry,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
June 1991, Gene,
P M Murphy, and H L Tiffany, and D McDermott, and S K Ahuja
February 2003, Biochemical and biophysical research communications,
Copied contents to your clipboard!