The Sertoli-germ cell communication network in mammals. 1993

B Jégou
GERM/INSERM CJF 91-04, Campus de Beaulieu, Université de Rennes I, Bretagne, France.

As soon as scientists began to study testicular structure and function, the concept emerged that SCs and GCs communicate. We now know that the seminiferous epithelium is certainly one of the most complex tissues and that the structural and functional supports of SC-GC communication are extremely elaborate. At all stages of sexual maturation, somatic cells and GCs have developed a formidable set of communication devices that are involved in attachment, displacement, cell shaping, and cell-cell transfer of molecules and cellular materials. Some of the best morphologists since the nineteenth century have studied the anatomical basis of the SC-GC dialogue and have laid the foundations to the understanding of the spermatogenic process. Further experimental efforts are still being made. In particular, new data are emerging that have enabled scientists to go beyond the descriptional or deductive aspects and to tackle the mechanical aspects. From the functional point of view, significant progress has been made in deciphering SC-GC cell language. The unique strategic position of the SC allows this cell type to receive, integrate, and emit all the signals required for the spermatogenic process to or from the extratubular compartment (e.g., FSH, testosterone), the peritubular cells (e.g., P-Mod-S), and GCs themselves. Its location also allows it to coordinate GC activity in both the transversal and the longitudinal axes of the seminiferous tubule. The SC barrier and SC products create the physical and chemical microenvironments required for the completion of each of the different steps of spermatogenesis. In addition to the tubule fluid, the SC products directly or indirectly implicated in GC control are proteins, peptides, and steroid(s) involved in germ cell proliferation, differentiation, and metabolism; transport/binding proteins; proteases; extracellular matrix components; energy metabolites; antiproteases; and various membrane components. Sertoli cell polarization results from the existence of SC-SC occluding junctions. The products required for the mitotic phase of spermatogenesis may principally be secreted basally, whereas those required for meiotic division, spermiogenesis, and sperm cells may preferentially be secreted apically. The interaction between SC factors and GCs is mediated by GC membrane receptors and different endocytic processes. The GC secondary pathway(s) involved in SC action remains a mystery. Germ cell markers that would enable a precise assessment of SC influence are lacking. Changes in the composition of the GC complement and in GC size and shape, as well as GC divisions and migration, profoundly affect SC morphology and function.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

B Jégou
January 1989, Annals of the New York Academy of Sciences,
B Jégou
January 1990, Reproduction, fertility, and development,
B Jégou
January 1982, Progress in clinical and biological research,
B Jégou
April 2009, Molecular human reproduction,
B Jégou
September 2004, Zhonghua nan ke xue = National journal of andrology,
B Jégou
November 2012, Science (New York, N.Y.),
B Jégou
January 2005, Advances in anatomy, embryology, and cell biology,
Copied contents to your clipboard!