Alkylating agents and immunotoxins exert synergistic cytotoxic activity against ovarian cancer cells. Mechanism of action. 1993

Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710.

Alkylating agents can be administered in high dosage to patients with ovarian cancer using autologous bone marrow support, but drug-resistant tumor cells can still persist. Immunotoxins provide reagents that might eliminate drug resistant cells. In the present study, concurrent treatment with alkylators and immunotoxins proved superior to treatment with each agent alone. Toxin immunoconjugates prepared from different monoclonal antibodies and recombinant ricin A chain (rRTA) inhibited clonogenic growth of ovarian cancer cell lines in limiting dilution assays. When alkylating agents and toxin conjugates were used in combination, the addition of the immunotoxins to cisplatin, or to cisplatin and thiotepa, produced synergistic cytotoxic activity against the OVCA 432 and OVCAR III cell lines. Studies performed to clarify the mechanism of action showed that cisplatin and thiotepa had no influence on internalization and binding of the 317G5-rRTA immunotoxin. Intracellular uptake of [195m]Pt-cisplatin was not affected by the immunoconjugate and thiotepa. The combination of the 317G5-rRTA and thiotepa, as well as 317G5-rRTA alone, increased [195m]Pt cisplatin-DNA adduct levels. The immunotoxin alone and in combination with the alkylators decreased intracellular glutathione levels and reduced glutathione-S-transferase activity. Repair of DNA damage induced by the combination of alkylators and 317G5-rRTA was significantly reduced when compared to repair after damage with alkylators alone. These findings suggest that immunotoxins affect levels and activity of enzymes required for the prevention and repair of alkylator damage.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
January 1966, Biokhimiia (Moscow, Russia),
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
July 1992, International journal of cancer,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
November 1991, International journal of cancer,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
April 2012, Oncology reports,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
January 1986, IARC scientific publications,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
May 1965, Nature,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
January 1969, Comptes rendus des seances de la Societe de biologie et de ses filiales,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
September 1963, Cancer research,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
January 2018, Biochemical and biophysical research communications,
Y J Lidor, and K C O'Briant, and F J Xu, and T C Hamilton, and R F Ozols, and R C Bast
April 1994, Gan to kagaku ryoho. Cancer & chemotherapy,
Copied contents to your clipboard!