Two structural adaptations for regulating transmitter release at lobster neuromuscular synapses. 1993

J P Walrond, and C K Govind, and S E Huestis
Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523.

The distal accessory flexor muscle (DAFM) in the lobster (Homarus americanus) walking leg consists of 5 muscle fiber bundles. All five bundles, one proximal, one distal, and 3 medial, are innervated by one excitatory and one inhibitory motor neuron. Both neurons release more transmitter on the distal bundle than on the proximal bundle. The aim of our studies was to investigate the structural basis of this differentiation. Thin sections cut at 50 microns intervals showed a similar number of excitatory synapses on the two bundles. Freeze-fracture views of excitatory synapses showed that synapse size, active zone number per synapse, and intramembrane particle density in the postsynaptic membrane are similar proximally and distally. Active zones at synapses on the distal bundle are larger and contain about 50% more large intramembrane particles, which are thought to include the voltage-gated Ca2+ channels that couple the action potential to transmitter release, than their counterparts on the most proximal bundle. This difference in channel number appears to produce a disproportionate increase in the probability of transmitter release sufficient to account for most of the proximal-distal disparity in the amplitude of the excitatory postsynaptic potential. In contrast, staining the inhibitor for antibodies to the inhibitory neurotransmitter, GABA, showed that it forms more varicosities on the distal bundle than on the proximal bundle. Because most of the synapses are located in the varicosities, differences in synapse number likely regulate the proximal-distal disparity in the amount of inhibitory transmitter released. Therefore, the regional differentiation in the amount of transmitter released in the DAFM appears to be based on two distinct mechanisms. In the inhibitor, transmitter release appears to be regulated differentially by differences in synapse number. In the excitor, transmitter release appears to be regulated differentially from a similar number of synapses by differences in active zone structure.

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J P Walrond, and C K Govind, and S E Huestis
May 1991, Neuron,
J P Walrond, and C K Govind, and S E Huestis
June 1981, Brain research,
J P Walrond, and C K Govind, and S E Huestis
March 1981, The Journal of cell biology,
J P Walrond, and C K Govind, and S E Huestis
December 1990, Neuron,
J P Walrond, and C K Govind, and S E Huestis
January 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J P Walrond, and C K Govind, and S E Huestis
January 2006, International review of neurobiology,
J P Walrond, and C K Govind, and S E Huestis
August 1988, Puerto Rico health sciences journal,
J P Walrond, and C K Govind, and S E Huestis
October 1978, The Journal of general physiology,
Copied contents to your clipboard!