Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. 1976

S L McKnight, and O L Miller

Chromatin was obtained from Drosophila melanogaster during early embryogenesis and examined by transmission electron microscopy. Nuclear contents spread at progressive stages of syncytial development show a low level of only non-nuclear template activity, and very few RNP fibril gradients extending over 2mum in length are observed. At the cellular blastoderm stage, newly activated nucleolar genes appear during the early portion of the first true cell cycle. Variation in the lengths of incomplete rRNP gradients indicates that the activation of each rRNA gene is independently controlled. All rRNA loci, whether having complete or incomplete gradients, exhibit high densities of nascent transcripts per unit length, suggesting that the rate of chromatin transcription, rather than the RNA polymarase I pool size, limits rRNA synthesis on individual genes. No more than half the rRNA genes are derepressed at this stage indicating that total rRNA synthesis is regulated by the number of genes activated. Non-nucleolar RNP fibril gradients covering up to 8 mum of genome are also first observed at the cellular blastoderm stage. Most of these gradients are differentiated from the short gradient first seen during syncytial growth by a lower density of transcribing RNA polymerases.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001756 Blastoderm A layer of cells lining the fluid-filled cavity (blastocele) of a BLASTULA, usually developed from a fertilized insect, reptilian, or avian egg. Blastoderms
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

S L McKnight, and O L Miller
September 1974, Developmental biology,
S L McKnight, and O L Miller
January 1983, The EMBO journal,
S L McKnight, and O L Miller
June 1979, Experimental cell research,
S L McKnight, and O L Miller
February 1968, The Journal of experimental zoology,
S L McKnight, and O L Miller
January 2014, PloS one,
S L McKnight, and O L Miller
October 1991, Molecular & general genetics : MGG,
S L McKnight, and O L Miller
September 2008, Gene expression patterns : GEP,
S L McKnight, and O L Miller
January 1991, Experimental cell research,
S L McKnight, and O L Miller
October 1985, Biochemical genetics,
S L McKnight, and O L Miller
April 1982, Developmental biology,
Copied contents to your clipboard!