Two types of 4-aminopyridine-sensitive potassium current in rabbit Schwann cells. 1993

M Baker, and J R Howe, and J M Ritchie
Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510.

1. Delayed rectifier K+ currents were studied in Schwann cells cultured from neonatal rabbit sciatic nerves with the whole-cell patch-clamp technique. 2. Depolarizing voltage steps (40 ms duration) activated two types of K+ current: type I, whose apparent activation threshold was about -60 mV (half-maximal conductance at -40 +/- 1 mV, n = 10); and type II, whose apparent activation threshold was about -25 mV (half-maximal conductance at + 11 +/- 1 mV, n = 9). 3. Type I current was blocked by alpha-dendrotoxin (alpha-DTX) with an apparent equilibrium dissociation constant (KD) of 1.3 nM, whereas the type II current was unaffected by exposure to 500 nM toxin. The action of alpha-DTX on the type I current was reversible. 4. Most cells exhibited both types of current, but occasionally some cells displayed just type I or just type II. 5. Type I current activated rapidly and then showed a much slower fade, which became more noticeable with larger depolarizations. Activation of type II current was slower than that of type I and depended less steeply on voltage. The time constants of activation for type I and type II currents were derived with a Hodgkin-Huxley formalism (based on second-power activation and deactivation kinetics). The longest activation time constant for type II gating was more than twice the corresponding time constant for type I; however, the time constants determined from tail current decays at potentials more negative than -60 mV were shorter for the type II currents than for the type I currents. 6. Both type I and type II currents were sensitive to micromolar concentrations of 4-aminopyridine (4-AP). The KD for 4-AP blockade of type II current was 630 microM (pH 7.2, membrane potential (Em) = -10 mV), which is about 6 times higher than the corresponding value for 4-AP blockade of type I current at negative membrane potentials. The differential sensitivity of the type I and type II currents to 4-AP may account for the apparent voltage dependence of 4-AP block of delayed rectifier K+ currents. 7. In addition to types I and II, a third type of outward K+ current (type III) was generated in most cells at positive membrane potentials. This latter current was insensitive to millimolar concentrations of 4-AP. 8. Similarities between Schwann cell and neuronal potassium channels are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103

Related Publications

M Baker, and J R Howe, and J M Ritchie
October 1988, Proceedings of the Royal Society of London. Series B, Biological sciences,
M Baker, and J R Howe, and J M Ritchie
April 1999, The American journal of physiology,
M Baker, and J R Howe, and J M Ritchie
September 1998, European journal of pharmacology,
M Baker, and J R Howe, and J M Ritchie
February 1991, The Journal of physiology,
M Baker, and J R Howe, and J M Ritchie
April 2002, British journal of pharmacology,
M Baker, and J R Howe, and J M Ritchie
August 1987, Pflugers Archiv : European journal of physiology,
M Baker, and J R Howe, and J M Ritchie
October 2007, European journal of pharmacology,
M Baker, and J R Howe, and J M Ritchie
January 2010, Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994),
M Baker, and J R Howe, and J M Ritchie
January 1997, The American journal of physiology,
Copied contents to your clipboard!