Renal prostaglandin synthesis in the spontaneously hypertensive rat. 1976

M J Dunn

The precise role of the kidney in spontaneous experimental hypertension is unknown. We have analyzed the rates of renal prostaglandin synthesis by utilizing a spontaneously hypertensive rat model. The synthetic rate of prostaglandin E2, prostaglandin F2alpha, and prostaglandin A2-like products was measured in vitro with renal microsomes. In the rabbit and rat there is a steep gradient of microsomal prostaglandin synthetase from papilla to cortex with highest activities in the papilla. Comparison of the activity of prostaglandin synthetase in medullary microsomes form normotensive and hypertensive rats showed accelerated synthesis in the spontaneously hypertensive rat. These differences appeared after several months of age, were statistically significant from 3 mo of age and, on the average, represented at least a twofold increase of in vitro activity. All classes of prostaglandins were involved with increased synthesis of prostaglandin E2, prostaglandin F2alpha and prostaglandin A2-like material. These data reenforce and extend previous work showing alterations of granularity and presumably prostaglandin synthesis in renal medullary intersitital cells in various experimental hypertensions. We also measured renal tissue content of prostaglandin E and prostaglandin A-prostaglandin B by radioimmunoassay. Swift and careful handling of the tissue was necessary to avoid extensive postmortem synthesis of prostaglandins. In rapidly-frozen medullary tissue only prostaglandin E was detectable in concentrations ranging from 10 to 200 pg/mg tissue. No significant differences were found in the medullary content of prostaglandin E in the control and hypertensive rats despite the increased rates of enzymatic synthesis. We conclude that renal prostaglandin synthesis is increased in renal medullary microsomes obtained from spontaneously hypertensive rat. This apparently occurs in response to the progressive development of hypertension since young animals did not show an increase Renal tissue prostaglandin E content did not increase and therefore appears to be a poor index of enhanced prostaglandin synthesis.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011454 Prostaglandins A (13E,15S)-15-Hydroxy-9-oxoprosta-10,13-dien-1-oic acid (PGA(1)); (5Z,13E,15S)-15-hydroxy-9-oxoprosta-5,10,13-trien-1-oic acid (PGA(2)); (5Z,13E,15S,17Z)-15-hydroxy-9-oxoprosta-5,10,13,17-tetraen-1-oic acid (PGA(3)). A group of naturally occurring secondary prostaglandins derived from PGE; PGA(1) and PGA(2) as well as their 19-hydroxy derivatives are found in many organs and tissues. PGA
D011458 Prostaglandins E (11 alpha,13E,15S)-11,15-Dihydroxy-9-oxoprost-13-en-1-oic acid (PGE(1)); (5Z,11 alpha,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-oic acid (PGE(2)); and (5Z,11 alpha,13E,15S,17Z)-11,15-dihydroxy-9-oxoprosta-5,13,17-trien-1-oic acid (PGE(3)). Three of the six naturally occurring prostaglandins. They are considered primary in that no one is derived from another in living organisms. Originally isolated from sheep seminal fluid and vesicles, they are found in many organs and tissues and play a major role in mediating various physiological activities. PGE
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal

Related Publications

M J Dunn
October 1977, The American journal of physiology,
M J Dunn
March 1977, Biochemical pharmacology,
M J Dunn
January 1983, Hypertension (Dallas, Tex. : 1979),
M J Dunn
January 1994, Transplant international : official journal of the European Society for Organ Transplantation,
M J Dunn
June 1982, The American journal of physiology,
M J Dunn
January 1987, Clinical and experimental hypertension. Part A, Theory and practice,
M J Dunn
January 1980, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!