Differential expression of the partially duplicated chloroplast S10 ribosomal protein operon. 1993

J C Tonkyn, and W Gruissem
Department of Plant Biology, University of California, Berkeley 94720.

The chloroplast S10 ribosomal protein operon is partially duplicated in many plants because it initiates within the inverted repeat of the circular chloroplast genome. In spinach, the complete S10 operon (S10B) spans the junction between inverted repeat B (IRB) and the large single-copy (LSC) region. The S10 operon is partially duplicated in the inverted repeat A (IRA), but the sequence of S10A completely diverges from S10B at the junction of S10A and the LSC region. The DNA sequence shared by S10A and S10B includes trnI1, the rpl23 pseudogene (rpl23 psi), the intron-containing rpl2 and rps19, which is truncated in S10A at the S10A/LSC junction (rps19'). Transcription of rps19' from the promoter region of S10A could result in the synthesis of a mutant S19 protein. Analysis of RNA accumulation and run-on transcription from S10A and S10B using unique probes from the S10A/LSC and S10B/LSC junctions reveals that expression of S10A is reduced. The difference in S10A and S10B expression appears to be the result of reduced transcription from S10A, rather than differences in RNA stability. Transcription of S10B can initiate at three distinct promoter regions, P1, P2 and P3, which map closely to transcripts detected by S1 nuclease analysis. P1 is located upstream of trnI1 and has the highest transcription initiation frequency in vitro of the three promoter regions. The DNA sequence of P1 is most similar to the chloroplast promoter consensus DNA sequence. Interference by the highly and convergently transcribed psbA-trnH1 operon is considered as a mechanism to explain the reduced activity of the S10A promoters.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014675 Vegetables A food group comprised of EDIBLE PLANTS or their parts. Vegetable

Related Publications

J C Tonkyn, and W Gruissem
June 1985, Nucleic acids research,
J C Tonkyn, and W Gruissem
January 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire,
J C Tonkyn, and W Gruissem
November 1990, Molecular & general genetics : MGG,
J C Tonkyn, and W Gruissem
October 1999, Journal of bacteriology,
J C Tonkyn, and W Gruissem
July 2003, The Journal of biological chemistry,
Copied contents to your clipboard!