Quantitative comparison of electrically and acoustically evoked auditory perception: implications for the location of perceptual mechanisms. 1993

R V Shannon
House Ear Institute, Los Angeles, CA 90057.

Electrical stimulation of the human auditory system produces different patterns of spatial and temporal neural activity than those that occur in the normal, acoustically stimulated system. Quantitative comparison of psychophysical performance measured with acoustic and electrical stimulation may allow us to infer the physiological locus of perceptual mechanisms. In this paper we compare psychophysical data on temporal resolution from normal-hearing listeners, cochlear implant listeners, and patients electrically stimulated on the cochlear nucleus. Measures of gap detection, forward masking, and modulation detection will be compared. These comparisons demonstrate that temporal processing is relatively similar across these three groups once the obvious differences in dynamic range are taken into consideration. In addition, preliminary results with speech processors indicate that implant patients can utilize all temporal information in speech. Thus, implant patients have relatively normal temporal resolution and can integrate temporal cues normally for the recognition of complex acoustic patterns such as speech. These results imply that the central auditory systems of implant patients are able to fully utilize the non-natural patterns of temporal neural information produced by electrical stimulation. The differences in the microstructure of the neural pattern (phase locking, stochastic independence of fibers, spatial distribution of activity, etc.) between electrical and acoustic stimulation are apparently not necessary for temporal processing. Thus, the physiological locus of temporal processing mechanisms must be more central in the auditory system than the cochlea and cochlear nucleus.

UI MeSH Term Description Entries
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D003054 Cochlear Implants Electronic hearing devices typically used for patients with normal outer and middle ear function, but defective inner ear function. In the COCHLEA, the hair cells (HAIR CELLS, VESTIBULAR) may be absent or damaged but there are residual nerve fibers. The device electrically stimulates the COCHLEAR NERVE to create sound sensation. Auditory Prosthesis,Cochlear Prosthesis,Implants, Cochlear,Auditory Prostheses,Cochlear Implant,Cochlear Prostheses,Implant, Cochlear,Prostheses, Auditory,Prostheses, Cochlear,Prosthesis, Auditory,Prosthesis, Cochlear
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D001307 Auditory Perception The process whereby auditory stimuli are selected, organized, and interpreted by the organism. Auditory Processing,Perception, Auditory,Processing, Auditory
D016057 Evoked Potentials, Auditory, Brain Stem Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES. Acoustic Evoked Brain Stem Potentials,Auditory Brain Stem Evoked Responses,Brain Stem Auditory Evoked Potentials,Evoked Responses, Auditory, Brain Stem,Acoustic Evoked Brain Stem Potential,Acoustic Evoked Brainstem Potential,Acoustic Evoked Brainstem Potentials,Auditory Brain Stem Evoked Response,Auditory Brain Stem Response,Auditory Brain Stem Responses,Auditory Brainstem Evoked Response,Auditory Brainstem Evoked Responses,Auditory Brainstem Responses,Brain Stem Auditory Evoked Potential,Brainstem Auditory Evoked Potential,Brainstem Auditory Evoked Potentials,Evoked Potential, Auditory, Brainstem,Evoked Potentials, Auditory, Brainstem,Evoked Response, Auditory, Brain Stem,Evoked Response, Auditory, Brainstem,Evoked Responses, Auditory, Brainstem,Auditory Brainstem Response,Brainstem Response, Auditory,Brainstem Responses, Auditory,Response, Auditory Brainstem,Responses, Auditory Brainstem
D017626 Cochlear Nucleus The brain stem nucleus that receives the central input from the cochlear nerve. The cochlear nucleus is located lateral and dorsolateral to the inferior cerebellar peduncles and is functionally divided into dorsal and ventral parts. It is tonotopically organized, performs the first stage of central auditory processing, and projects (directly or indirectly) to higher auditory areas including the superior olivary nuclei, the medial geniculi, the inferior colliculi, and the auditory cortex. Cochlear Nuclei,Nuclei, Cochlear,Nucleus, Cochlear

Related Publications

R V Shannon
January 1977, Transactions. Section on Otolaryngology. American Academy of Ophthalmology and Otolaryngology,
R V Shannon
January 1980, Acta oto-laryngologica,
R V Shannon
January 1997, Advances in oto-rhino-laryngology,
R V Shannon
January 1982, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
R V Shannon
January 1997, Advances in oto-rhino-laryngology,
R V Shannon
February 2008, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology,
R V Shannon
January 1997, Audiology : official organ of the International Society of Audiology,
Copied contents to your clipboard!