Extensions of the known sequences at the 3' and 5' ends of 23S ribosomal RNA from Escherichia coli, possible base pairing between these 23S RNA regions and 16S ribosomal RNA. 1976

C Branlant, and J S Widada, and A Krol, and J P Ebel

Extensions of the known sequences at both 3' and 5' ends of 23S ribosomal RNA are presented: The 5' terminal is pG-G-U-U-A-A-G-Cp or pG-G-U... G-U-U-A-A-G-Cp, with a very short sequence between Up and Gp and the 3'terminal is G-A-A-C-C-G-A-(G)-G-C-U-U-A-A-C-C-U-UOH. These two terminal regions exhibit a high degree of complementarity. In addition, extensive complementarities are also found between the 5'terminal sequence of 23S RNA and a sequence contained in section A of the 16S ribosomal RNA, and between the 3'terminal sequence of 23S RNA and sequences in sections O and J in the 16S RNA. The degree of complementarity between the two extremities of 23S RNA, and between these extremities and regions of the 16S RNA, is far greater than would be expected on a random basis suggesting a possible involvement of this base-pairing in the functioning of ribosomes. This possibility is discussed.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006163 Ribonuclease T1 An enzyme catalyzing the endonucleolytic cleavage of RNA at the 3'-position of a guanylate residue. EC 3.1.27.3. Guanyloribonuclease,RNase T1,Ribonuclease N1,Aspergillus oryzae Ribonuclease,Guanyl-Specific RNase,RNase Apl,RNase F1,RNase Pch 1,RNase ST,Ribonuclease F1,Ribonuclease F2,Ribonuclease ST,Ribonuclease T-1,T 1 RNase,Guanyl Specific RNase,RNase, Guanyl-Specific,RNase, T 1,Ribonuclease T 1,Ribonuclease, Aspergillus oryzae
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S

Related Publications

C Branlant, and J S Widada, and A Krol, and J P Ebel
November 1971, Nature: New biology,
C Branlant, and J S Widada, and A Krol, and J P Ebel
November 1979, Journal of molecular biology,
C Branlant, and J S Widada, and A Krol, and J P Ebel
February 1985, Nucleic acids research,
C Branlant, and J S Widada, and A Krol, and J P Ebel
November 1971, Nature: New biology,
C Branlant, and J S Widada, and A Krol, and J P Ebel
July 1971, Nature: New biology,
C Branlant, and J S Widada, and A Krol, and J P Ebel
June 1984, Nucleic acids research,
C Branlant, and J S Widada, and A Krol, and J P Ebel
November 1983, Nucleic acids research,
C Branlant, and J S Widada, and A Krol, and J P Ebel
January 1970, Nature,
C Branlant, and J S Widada, and A Krol, and J P Ebel
August 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!