The substrate specificity of brain microsomal phospholipase D. 1993

J Horwitz, and L L Davis
Department of Pharmacology, Medical College of Pennsylvania, Philadelphia 19129.

Neurotransmitters activate a phospholipase D that is though to specifically hydrolyse phosphatidylcholine. This enzyme has a unique property known as transphosphatidylation: in the presence of an appropriate nucleophilic receptor such as an alcohol, phospholipase D will catalyse the production of phosphatidyl-alcohol. We have studied phospholipase D using an in vitro assay that uses [3H]butanol of high specific radioactivity (15 Ci/mmol) as an acceptor. In the presence of [3H]butanol and phosphatidylcholine, a microsomal membrane fraction from rat brain catalysed the production of phosphatidyl[3H]butanol. Phospholipase D activity was dependent upon the presence of a detergent; the optimal sodium oleate concentration was between 4 and 6 mM. The RF of the phosphatidyl[3H]butanol on t.l.c. was identical to the RF of the phosphatidylbutanol formed when [3H]phosphatidylcholine was incubated with 100 mM butanol. These data confirm the identity of phosphatidyl[3H]butanol. One important advantage of this assay is that the substrate does not need to be labelled. We have used this advantage to examine the substrate specificity of phospholipase D. Microsomal phospholipase D appears to hydrolyse phosphatidylcholine most efficiently. There is a relatively small but significant activity against phosphatidylethanolamine and phosphatidylserine, and there is no significant activity against phosphatidylinositol. As the head-group becomes more like choline, the phospholipid becomes a better substrate for phospholipase D. The addition of one methyl group leads to a large increase in activity. Fatty acid composition does not play a role in determining the substrate specificity. This assay should be useful in furthering our understanding of this important enzyme.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

J Horwitz, and L L Davis
September 1980, Biochemical and biophysical research communications,
J Horwitz, and L L Davis
May 1999, Journal of medicinal chemistry,
J Horwitz, and L L Davis
March 1999, Journal of medicinal chemistry,
J Horwitz, and L L Davis
October 1963, Biochimica et biophysica acta,
J Horwitz, and L L Davis
November 1980, Steroids,
J Horwitz, and L L Davis
April 2008, Chembiochem : a European journal of chemical biology,
J Horwitz, and L L Davis
August 1982, Journal of neurochemistry,
J Horwitz, and L L Davis
February 1969, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!