Inhibition of the human leukocyte endopeptidases elastase and cathepsin G and of porcine pancreatic elastase by N-oleoyl derivatives of heparin. 1993

A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
Department of Rheumatology, University Hospital, Zurich, Switzerland.

N-oleoyl-heparin derivatives differing in their oleic acid and sulfate contents were synthesized and studied for their abilities to inhibit human leukocyte elastase (HLE), human leukocyte cathepsin G (CatG) and porcine pancreatic elastase (PPE) at pH 8.0, ionic strength 0.05 M and 37 degrees. Heparin (Hep) as well as N-oleoyl-heparins behaved as tight-binding, hyperbolic noncompetitive inhibitors of HLE (KiHep = 75 pM) and CatG (KiHep < 25 pM). The main driving force for the interaction between enzymes and glycosaminoglycans was electrostatic in nature. Under the condition [enzyme] >> Ki, the stoichiometries of the interaction with Hep were 1:2 (Hep:HLE) and 1:4 (Hep:CatG). Coupling one oleic acid residue to three disaccharide units of partially N-desulfated Hep, Ol1:3Hep, lowered HLE inhibition (Ki = 0.3 nM) and the stoichiometry of binding was reduced to 1:1. Re-N-sulfation of a similar derivative, Ol1:5Hep(SO4), containing one fatty acid residue for five disaccharide units, led to a substance with similar HLE inhibitory characteristics as Hep (Ki = 92 pM) and stoichiometry 1:2. Ol1:5Hep(SO4) was also a more efficient inhibitor of CatG (Ki < 33 pM) than Ol1:3Hep (Ki = 9.5 nM). The residual activities of N-oleoyl-Hep complexes with CatG were much lower than the corresponding activities in the presence of Hep. While oleate and Hep could not inhibit PPE, N-oleoyl-Hep, independently of fatty acid substitution and sulfate content, could inhibit this enzyme with Ki congruent to 60 nM and low residual activity. The efficient endopeptidase inhibitory characteristics of N-oleoyl-Hep derivatives, together with their non-anticoagulant properties and their capacity to interact with elastin, may be therapeutically useful in connective tissue degenerative diseases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009829 Oleic Acids A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon. Octadecenoic Acids,Acids, Octadecenoic,Acids, Oleic
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin

Related Publications

A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
November 1977, Biochimica et biophysica acta,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
October 1993, Journal of medicinal chemistry,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
December 1984, The Journal of biological chemistry,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
November 1994, Biochimica et biophysica acta,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
January 1990, Biochemical and biophysical research communications,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
July 1996, Biochemistry,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
May 1992, Journal of medicinal chemistry,
A Baici, and C Diczházi, and A Neszmélyi, and E Móczár, and W Hornebeck
August 1990, Biological chemistry Hoppe-Seyler,
Copied contents to your clipboard!