An electrophysiological study of descending projections to the lumbar spinal cord in adult male rats. 1993

J Tanaka, and A P Arnold
Department of Psychology, University of California, Los Angeles 900024-1563.

Recent anatomical evidence suggests that descending projections from the lateral vestibular nucleus (LVe) and gigantocellular reticular nucleus (Gi) innervate areas of the lumbar spinal cord near the spinal nucleus of the bulbocavernosus (SNB). To confirm this finding electrophysiologically, we recorded and mapped averaged field potentials within the lumbar spinal cord of male rats in response to electrical stimulation of the LVe or Gi and compared these with the location of averaged field potentials evoked at the same levels by stimulation of SNB axons in the bulbocavernosus (BC) nerve. Stimulation of the LVe or the Gi produced negative field potentials that were largest at sites 200-450 microns dorsolateral to SNB somata. In an attempt to verify that this region innervates SNB motoneurons, the BC motor nerve volley was recorded in response to microstimulation at various depths within the spinal cord. Stimulation of sites dorsolateral and lateral to the SNB somata elicited volleys in the BC nerve that had two components. The onset latency of the earlier component was similar to the antidromic latency of SNB motoneurons to BC nerve stimulation, and the threshold for eliciting this component was lowest at sites in the electrode track near SNB somata. Thus, the earlier component may be evoked by direct stimulation of the SNB motoneurons. The threshold for evoking the later component was lowest at the sites 230-380 microns dorsolateral to SNB somata, suggesting that this component involves activation of other neurons. These results indicate that the LVe and Gi may modulate the activity of SNB motoneurons through interneurons located in a region several hundred microns away from SNB somata.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001479 Basal Ganglia Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres. Basal Nuclei,Ganglia, Basal,Basal Nuclear Complex,Ganglion, Basal,Basal Nuclear Complices,Nuclear Complex, Basal,Nuclei, Basal
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

J Tanaka, and A P Arnold
October 1990, The Journal of comparative neurology,
J Tanaka, and A P Arnold
January 1992, Neuroscience and behavioral physiology,
J Tanaka, and A P Arnold
February 1991, Arkhiv anatomii, gistologii i embriologii,
J Tanaka, and A P Arnold
May 1991, The Journal of comparative neurology,
J Tanaka, and A P Arnold
January 1982, Progress in brain research,
J Tanaka, and A P Arnold
September 1981, Neuroscience letters,
J Tanaka, and A P Arnold
August 1986, Bratislavske lekarske listy,
Copied contents to your clipboard!