Sequence of the human iduronate 2-sulfatase (IDS) gene. 1993

P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
Department of Chemical Pathology, Adelaide Children's Hospital, South Australia.

Deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS; EC 3.1.6.13) results in the storage of the glycosaminoglycans heparan sulfate and dermatan sulfate, which leads to the lysosomal storage disorder mucopolysaccharidosis type II. Three overlapping genomic clones derived from an X-chromosome-specific library containing the entire IDS gene were isolated and the sequences of the intron boundaries and the 5' promoter region were determined. The IDS gene is split into nine exons spanning approximately 24 kb. The potential promoter for IDS lacks a TATA box but contains GC box consensus sequences, consistent with its role as a housekeeping gene. A polypyrimidine-like repeat is found in intron 1.

UI MeSH Term Description Entries
D007066 Iduronate Sulfatase An enzyme that specifically cleaves the ester sulfate of iduronic acid. Its deficiency has been demonstrated in Hunter's syndrome, which is characterized by an excess of dermatan sulfate and heparan sulfate. EC 3.1.6.13. Hunter Corrective Factor,Iduronatesulfate Sulfohydrolase,Sulfoiduronate Sulfatase,Iduronate Sulfate Sulfatase,Corrective Factor, Hunter,Factor, Hunter Corrective,Sulfatase, Iduronate,Sulfatase, Iduronate Sulfate,Sulfatase, Sulfoiduronate,Sulfate Sulfatase, Iduronate,Sulfohydrolase, Iduronatesulfate
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
September 1995, Genomics,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
January 1998, Human mutation,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
January 1994, Human mutation,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
December 1998, Human genetics,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
January 1999, Human mutation,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
June 2023, Scientific reports,
P J Wilson, and C A Meaney, and J J Hopwood, and C P Morris
January 1982, Methods in enzymology,
Copied contents to your clipboard!