Myelinated primary afferents of the sacral spinal cord responding to slow filling and distension of the cat urinary bladder. 1993

H J Häbler, and W Jänig, and M Koltzenburg
Physiologisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.

1. A total of sixty-five sacral afferent neurones with myelinated fibres supplying the urinary bladder was recorded from the sacral roots S2 in anaesthetized cats. All afferent units were identified with electrical stimulation of the pelvic nerve. The discharge properties were quantitatively evaluated using slow filling at rates of 1-2 ml min-1 and isotonic distension to preset pressure levels. Eight afferents were studied prior to and after acute sacral de-efferentation of the urinary bladder. 2. All afferent units were silent when the bladder was empty and responded in a graded manner to an increase of intravesical pressure. During slow filling the level of afferent activity correlated closely with the level of the intravesical pressure. All afferents behaved like slowly adapting mechanoreceptors with both a dynamic and static component of their discharge. With the exception of two units the intraluminal pressure threshold was below 25 mmHg. Thus virtually all myelinated afferents respond in the pressure range that is reached during a non-painful micturition cycle. 3. The stimulus-response functions of the afferents were similar regardless of whether intravesical pressure was increased by slow filling or by distension. However, during slow filling stimulation response functions often exhibited steeper slopes between 5 and 25 mmHg indicating that relatively small changes of intravesical pressure result in large changes of afferent activity. Nevertheless, all units displayed monotonically increasing stimulus response functions throughout the innocuous and noxious pressure level. 4. The stimulus-response functions of the afferent neurones did not change after acute de-efferentation of the urinary bladder, although the rapid phasic fluctuations of afferent activity that are produced by small contractions of the urinary bladder under normal conditions largely disappeared. This means that contractions and distension activate the afferent endings by a common mechanism. 5. It is concluded that the myelinated sacral afferents of the urinary bladder form a homogeneous population which encodes all information necessary for the normal regulation of this organ. Furthermore, this set of afferents mediates all sensations which may reach consciousness within a normal micturition cycle.

UI MeSH Term Description Entries
D008297 Male Males
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000758 Anesthesia A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.

Related Publications

H J Häbler, and W Jänig, and M Koltzenburg
December 1968, The Journal of physiology,
H J Häbler, and W Jänig, and M Koltzenburg
April 1987, Neuroscience letters,
H J Häbler, and W Jänig, and M Koltzenburg
August 1987, Brain research,
H J Häbler, and W Jänig, and M Koltzenburg
July 1985, Archives italiennes de biologie,
H J Häbler, and W Jänig, and M Koltzenburg
January 1986, Peptides,
H J Häbler, and W Jänig, and M Koltzenburg
June 1993, The Journal of physiology,
H J Häbler, and W Jänig, and M Koltzenburg
August 1985, The Journal of comparative neurology,
H J Häbler, and W Jänig, and M Koltzenburg
April 1983, The Journal of physiology,
H J Häbler, and W Jänig, and M Koltzenburg
November 1993, The Journal of comparative neurology,
H J Häbler, and W Jänig, and M Koltzenburg
November 1994, Journal of the autonomic nervous system,
Copied contents to your clipboard!