Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. 1993

K Liberek, and C Georgopoulos
Departement de Biochimie Medicale, Centre Medical Universitaire, Genève, Switzerland.

All organisms respond to various forms of stress, including heat shock. The heat shock response has been universally conserved from bacteria to humans. In Escherichia coli the heat shock response is under the positive transcriptional control of the sigma 32 polypeptide and involves transient acceleration in the rate of synthesis of a few dozen genes. Three of the heat shock genes--dnaK, dnaJ, and grpE--are special because mutations in any one of these lead to constitutive levels of heat shock gene expression, implying that their products negatively autoregulate their own synthesis. The DnaK, DnaJ, and GrpE proteins have been known to function in various biological situations, including bacteriophage lambda replication. Here, we report the formation of an ATP hydrolysis-dependent complex of DnaJ, sigma 32, and DnaK proteins in vitro. This DnaJ-sigma 32-DnaK complex has been seen under different conditions, including glycerol gradient sedimentation and co-immunoprecipitation. The DnaK and DnaJ proteins in the presence of ATP can interfere with the efficient binding of sigma 32 to the RNA polymerase core, and are capable of disrupting a preexisting sigma 32-RNA polymerase complex. Our results suggest a possible mechanism for the autoregulation of the heat shock response.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

K Liberek, and C Georgopoulos
July 1992, Genes & development,
K Liberek, and C Georgopoulos
November 1989, Journal of bacteriology,
K Liberek, and C Georgopoulos
January 1990, Molecular & general genetics : MGG,
K Liberek, and C Georgopoulos
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
K Liberek, and C Georgopoulos
January 1997, Acta microbiologica Polonica,
K Liberek, and C Georgopoulos
March 1991, Molecular & general genetics : MGG,
K Liberek, and C Georgopoulos
January 1999, Acta microbiologica Polonica,
K Liberek, and C Georgopoulos
January 1997, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!