Calculations of mass energy-transfer and mass energy-absorption coefficients for photon energies from 1 keV to 100 MeV have been developed, based on a re-examination of the processes involved after the initial photon interaction. The probabilities for the initial interaction are from the current photon interaction cross-section database at the National Institute of Standards and Technology. The calculations then take into account (1) electron binding effects on the Compton-scattered photon distribution; (2) the complete cascade of fluorescence emission after ionization events in any atomic subshell, including those associated with incoherent scattering and triplet production; and (3) the radiative energy losses of the secondary electrons and positrons slowing down in the medium, including the emission of bremsstrahlung, characteristic X rays from impact ionization, and positron in-flight as well as at-rest annihilation quanta. Consideration of the processes in (3) goes beyond the continuous-slowing-down approximation and includes the effects of energy-loss straggling. Results for the mass energy-absorption coefficient are compared with those from recent tabulations.