Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria. 1976

J A Bont

Hydrogenase activity in cells of the nitrogen-fixing methane-oxidizing bacterium strain 41 of the Methylosinus type increased markedly when growth was dependent upon the fixation of gaseous nitrogen. A direct relationship may exist between hydrogenase and nitrogenase in this bacterium. Acetylene reduction was supported by the presence of hydrogen gas.

UI MeSH Term Description Entries
D008697 Methane The simplest saturated hydrocarbon. It is a colorless, flammable gas, slightly soluble in water. It is one of the chief constituents of natural gas and is formed in the decomposition of organic matter. (Grant & Hackh's Chemical Dictionary, 5th ed)
D008772 Methylococcaceae A family of gram-negative, aerobic bacteria utilizing only one-carbon organic compounds and isolated from in soil and water. Methane-Oxidizing Bacteria,Methanomonadaceae,Methylomonadaceae,Methane Oxidizing Bacteria,Methylmonadaceae
D009586 Nitrogen Fixation The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds. Diazotrophy,Diazotrophic Activity,Dinitrogen Fixation,N2 Fixation,Activities, Diazotrophic,Activity, Diazotrophic,Diazotrophic Activities,Fixation, Dinitrogen,Fixation, N2,Fixation, Nitrogen
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000114 Acetylene The simplest two carbon alkyne with the formula HCCH. Ethyne

Related Publications

J A Bont
January 1980, Mikrobiologicheskii zhurnal,
J A Bont
August 1964, Journal of bacteriology,
J A Bont
September 1964, Proceedings of the National Academy of Sciences of the United States of America,
J A Bont
January 1973, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
Copied contents to your clipboard!