Mechanism-based inactivation of gastric peroxidase by mercaptomethylimidazole. 1993

U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
Department of Physiology, Indian Institute of Chemical Biology, Calcutta.

The mechanism of inhibition of gastric peroxidase (GPO) activity by mercaptomethylimidazole (MMI), an inducer of gastric acid secretion, has been investigated. Incubation of purified GPO with MMI in the presence of H2O2 results in irreversible inactivation of the enzyme. No significant inactivation occurs in the absence of H2O2 or MMI, suggesting the involvement of peroxidase-catalysed oxidized MMI (MMIOX.) in the inactivation process. The inactivation follows pseudo-first-order kinetics consistent with a mechanism-based (suicide) mode. The pseudo-first-order kinetic constants at pH 8 are ki = 111 microM, k(inact.) = 0.55 min-1 and t1/2 = 1.25 min, and the second-order rate constant is 0.53 x 10(4) M-1 x min-1. Propylthiouracil also inactivates GPO activity in the same manner but its efficiency (k(inact./ki = 0.46 mM-1 x min-1) is about 10 times lower than that of MMI (k(inact./ki = 5 mM-1 x min-1). The rate of inactivation with MMI shows pH-dependence with an inflection point at 7.3, indicating the involvement in the inactivation process of an ionizable group on the enzyme with a pKa of 7.3. The enzyme is remarkably protected against inactivation by micromolar concentrations of electron donors such as iodide and bromide but not by chloride. Although GPO oxidizes MMI slowly, iodide stimulates it through enzymic generation of I+ which is reduced back to I- by MMI. Although MMIOX. is formed at a much higher rate in the presence of I-, a constant concentration of I- maintained via the reduction of I+ by MMI, protects the active site of the enzyme against inactivation. We suggest that MMI inactivates catalytically active GPO by acting as a suicidal substrate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008713 Methimazole A thioureylene antithyroid agent that inhibits the formation of thyroid hormones by interfering with the incorporation of iodine into tyrosyl residues of thyroglobulin. This is done by interfering with the oxidation of iodide ion and iodotyrosyl groups through inhibition of the peroxidase enzyme. Methymazol,Thiamazole,1-Methyl-2-mercaptoimidazole,Favistan,Mercasolyl,Mercazol,Mercazole,Mercazolyl,Merkazolil,Methizol,Methylmercaptoimidazole,Metisol,Metizol,Strumazol,Tapazole,Thiamazol Henning,Thiamazol Hexal,Thimazol,Thyrozol,Tiamazol,Tirodril,1 Methyl 2 mercaptoimidazole,Henning, Thiamazol,Hexal, Thiamazol
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D011441 Propylthiouracil A thiourea antithyroid agent. Propythiouracil inhibits the synthesis of thyroxine and inhibits the peripheral conversion of throxine to tri-iodothyronine. It is used in the treatment of hyperthyroidism. (From Martindale, The Extra Pharmacopeoia, 30th ed, p534) 6-Propyl-2-Thiouracil,6 Propyl 2 Thiouracil
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
August 1994, Biochemistry,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
January 2002, Biotechnology progress,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
December 1982, Biochemical pharmacology,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
June 2006, Biophysical chemistry,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
July 1988, Biochemistry,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
March 1989, Biochemical pharmacology,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
November 2015, International journal of biological macromolecules,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
November 2003, The Biochemical journal,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
March 1959, Nature,
U Bandyopadhyay, and D K Bhattacharyya, and R K Banerjee
June 1997, The Biochemical journal,
Copied contents to your clipboard!