Abnormal twenty-four hour pattern of pulsatile luteinizing hormone secretion and the response to naloxone in women with hyperprolactinaemic amenorrhoea. 1993

C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
Department of Obstetrics and Gynaecology, University of Edinburgh, Scotland.

OBJECTIVE Hyperprolactinaemic amenorrhoea is associated with disturbances of pulsatile gonadotrophin secretion. The underlying mechanism remains unclear and the aim of this study was to investigate the 24-hour secretory pattern of gonadotrophins in women with hyperprolactinaemic amenorrhoea. The effect of opioid blockade using naloxone infusion on LH secretory pattern was also studied. METHODS The secretory patterns of LH, FSH, PRL and their responses to naloxone infusion were studied by serial blood samples collected at 10-minute intervals for 24 hours. On the following day, naloxone was infused at a dose of 1.6 mg per hour for 4 hours. METHODS Eight women with hyperprolactinaemic amenorrhoea, two women hyperprolactinaemic but with normal ovarian cycles, and nine control subjects in the early follicular phase of menstrual cycle. METHODS Concentrations of LH, FSH and PRL were measured in plasma samples obtained at 10-minute intervals for 24 hours. In one woman, concentrations of urinary oestrone glucuronide were measured daily during treatment with pulsatile GnRH. RESULTS The number of LH pulses per 24 hours was significantly fewer in women with hyperprolactinaemic amenorrhoea than in those with hyperprolactinaemia with normal cycles or control subjects (mean +/- SEM 4.5 +/- 2.4 vs 13.5 +/- 2.5 vs 17.3 +/- 0.8, P < 0.001). The magnitude of each episode of secretion was significantly higher in the hyperprolactinaemic amenorrhoeic women (P < 0.05) so the overall mean concentrations of LH throughout the 24-hour period was similar in the three groups (5.2 +/- 1.1, 4.8 +/- 0.8 and 5.2 +/- 0.4 U/l respectively). In women with hyperprolactinaemic amenorrhoea there was no significant change in the pattern of LH secretion during sleep in contrast to the control women in whom there was a slowing in the LH pulse frequency during the night. There was no significant change in the mean concentrations of LH, FSH and PRL during the naloxone infusion. There were also no significant changes in the LH pulse frequency in response to naloxone infusion when compared with an equivalent period of time in the previous 24 hours. In one hyperprolactinaemic amenorrhoeic woman, follicular development, ovulation and pregnancy were induced when gonadotrophin releasing hormone (GnRH) was infused in a pulsatile manner at a dose of 5 micrograms every 90 minutes. CONCLUSIONS The suppression of normal ovarian cycles in women with hyperprolactinaemic amenorrhoea is due to a significant reduction in frequency of LH (GnRH) secretion which is not due to an increase in hypothalamic opioid activity. As normal ovarian cycles can occur or be induced by exogenous GnRH in hyperprolactinaemia, it is unlikely that a high level of prolactin by itself inhibits follicular development and ovulation.

UI MeSH Term Description Entries
D006966 Hyperprolactinemia Increased levels of PROLACTIN in the BLOOD, which may be associated with AMENORRHEA and GALACTORRHEA. Relatively common etiologies include PROLACTINOMA, medication effect, KIDNEY FAILURE, granulomatous diseases of the PITUITARY GLAND, and disorders which interfere with the hypothalamic inhibition of prolactin release. Ectopic (non-pituitary) production of prolactin may also occur. (From Joynt, Clinical Neurology, 1992, Ch36, pp77-8) Prolactin Hypersecretion Syndrome,Prolactin, Inappropriate Secretion,Hyperprolactinaemia,Inappropriate Prolactin Secretion,Inappropriate Prolactin Secretion Syndrome,Hyperprolactinemias,Hypersecretion Syndrome, Prolactin,Inappropriate Secretion Prolactin,Prolactin Secretion, Inappropriate,Secretion Prolactin, Inappropriate,Secretion, Inappropriate Prolactin,Syndrome, Prolactin Hypersecretion
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D005260 Female Females
D005498 Follicular Phase The period of the MENSTRUAL CYCLE representing follicular growth, increase in ovarian estrogen (ESTROGENS) production, and epithelial proliferation of the ENDOMETRIUM. Follicular phase begins with the onset of MENSTRUATION and ends with OVULATION. Menstrual Cycle, Follicular Phase,Menstrual Cycle, Proliferative Phase,Menstrual Proliferative Phase,Preovulatory Phase,Phase, Follicular,Phase, Menstrual Proliferative,Phase, Preovulatory,Proliferative Phase, Menstrual
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
February 1982, Clinical endocrinology,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
July 1972, The Journal of clinical endocrinology and metabolism,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
April 1993, Fertility and sterility,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
November 1991, The Journal of clinical endocrinology and metabolism,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
December 2005, General and comparative endocrinology,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
March 1988, Clinical endocrinology,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
August 1980, The Journal of clinical endocrinology and metabolism,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
January 1975, Progress in brain research,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
November 1984, The Journal of clinical endocrinology and metabolism,
C C Tay, and A F Glasier, and P J Illingworth, and D T Baird
August 1984, Acta endocrinologica,
Copied contents to your clipboard!