GABA shapes a topographic organization of response latency in the mustache bat's inferior colliculus. 1993

T J Park, and G D Pollak
Department of Zoology, University of Texas at Austin 78712.

Many neurons in the auditory forebrain of the mustache bat act as coincidence detectors for signals separated in time by up to 20 msec. Differences in path lengths cannot adequately explain how the nervous system delays one signal relative to the other to such a large degree. Several researchers have proposed that an inhibitory mechanism might account for long delays, but it has not been known where these delays are created. Previous studies, using a variety of mammals, have reported that the inferior colliculus contains some cells with much longer latencies than those of cells in lower auditory centers, suggesting that the inferior colliculus might be the site where long delays are generated. We characterized the latencies of cells in the 60 kHz contour of the mustache bat inferior colliculus and examined how GABAergic inhibition affected the latencies of those cells. Evaluations of the influence of GABA were made by documenting changes in response latency that occurred when GABAergic inputs were reversibly blocked by iontophoretic application of the GABAA antagonist bicuculline. Prior to bicuculline application, latencies varied over a wide range among the population of cells and we observed a pattern of latency changes with dorsoventral location. The pattern was that the population of neurons in the dorsal regions of the inferior colliculus had a wide range of latencies while the population in more ventral regions had progressively narrower latency ranges. Thus, while some cells at each depth had comparably short latencies, the average latency of the population at a given depth was long in the dorsal inferior colliculus and became progressively shorter ventrally. The same characteristic distribution of latencies and pattern of latency changes with depth were observed for cells that had different aural preferences, different rate-intensity functions, and different discharge patterns, suggesting that latency is an important organizational feature of the inferior colliculus. Bicuculline substantially shortened latency in about half of the cells studied, and it dramatically altered the pattern of latency changes with depth. These results suggest that GABA normally lengthens response latencies and creates a dorsoventral grading of delays in the inferior colliculus. This wide range of latencies could provide the large latency differences necessary for the coincidence detectors in the medial geniculate body tuned to signals separated by up to 20 msec.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D004455 Echolocation An auditory orientation mechanism involving the emission of high frequency sounds which are reflected back to the emitter (animal). Echolocations
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001307 Auditory Perception The process whereby auditory stimuli are selected, organized, and interpreted by the organism. Auditory Processing,Perception, Auditory,Processing, Auditory
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D018756 GABA Antagonists Drugs that bind to but do not activate GABA RECEPTORS, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID and GABA RECEPTOR AGONISTS. gamma-Aminobutyric Acid Antagonists,GABA Antagonist,GABA Receptor Antagonists,Acid Antagonists, gamma-Aminobutyric,Antagonist, GABA,Antagonists, GABA,Antagonists, GABA Receptor,Antagonists, gamma-Aminobutyric Acid,Receptor Antagonists, GABA,gamma Aminobutyric Acid Antagonists

Related Publications

T J Park, and G D Pollak
April 1988, The Journal of comparative neurology,
T J Park, and G D Pollak
January 2007, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
T J Park, and G D Pollak
August 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T J Park, and G D Pollak
November 1975, The Journal of comparative neurology,
T J Park, and G D Pollak
January 2012, Frontiers in neural circuits,
T J Park, and G D Pollak
May 1982, The Journal of comparative neurology,
Copied contents to your clipboard!