Ganglioside composition of subcellular fractions, including pre- and postsynaptic membranes, from Torpedo electric organ. 1993

R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
UMDNJ New Jersey Medical School, Departments of Neurosciences and Physiology, Newark 07103.

Gangliosides were isolated from four subcellular fractions of the electric organ of Torpedo marmorata: synaptosomes, presynaptic membranes, postsynaptic membranes, and synaptic vesicle membranes. This exploited a principal advantage offered by this tissue: facile separation of pre-and postsynaptic elements. Total ganglioside concentration in presynaptic membranes was approximately twice that of synaptosomes and 15 times that of postsynaptic membranes (47.7, 24.4, and 3.21 micrograms of lipid sialic acid per mg protein, respectively). Synaptic vesicle membranes had the highest overall concentration (78.9) relative to protein, but a concentration approximately comparable to that of presynaptic membranes when expressed relative to phospholipid. The thin-layer patterns of these two fractions were similar, both in terms of total pattern and the specific pattern of gangliotetraose structures as revealed by overlay with cholera toxin B subunit; these were notable for the paucity of monosialo structures and the virtual absence of GM1. Postsynaptic membranes, on the other hand, had a significantly higher content of monosialogangliosides including the presence of GM1. The synaptosomal pattern resembled that of the presynaptic membranes and synaptic vesicles. Thus, a clear difference in ganglioside pattern could be discerned between the pre- and postsynaptic elements of the electric organ.

UI MeSH Term Description Entries
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D005679 G(M3) Ganglioside A ganglioside present in abnormally large amounts in the brain and liver due to a deficient biosynthetic enzyme, G(M3):UDP-N-acetylgalactosaminyltransferase. Deficiency of this enzyme prevents the formation of G(M2) ganglioside from G(M3) ganglioside and is the cause of an anabolic sphingolipidosis. Hematoside,Sialyllactosylceramide,Ganglioside GM3,II3NeuAcLacCer,Sialyl Lactosylceramide,GM3, Ganglioside,Lactosylceramide, Sialyl
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic

Related Publications

R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
July 1972, The Biochemical journal,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
July 1984, The Journal of cell biology,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
June 1996, Lipids,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
January 1988, Neurochemistry international,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
October 1958, Experimental cell research,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
January 1966, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
October 1970, Journal of neurochemistry,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
April 1973, Journal of neurochemistry,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
May 1997, The Biochemical journal,
R W Ledeen, and M F Diebler, and G Wu, and Z H Lu, and H Varoqui
November 1985, The Journal of cell biology,
Copied contents to your clipboard!