Characterization of a multisubunit human protein which selectively binds single stranded d(GA)n and d(GT)n sequence repeats in DNA. 1993

A Aharoni, and N Baran, and H Manor
Department of Biology, Technion-Israel Institute of Technology, Haifa.

A protein which selectively binds d(GA)n and d(GT)n sequence repeats in single stranded DNA has been identified in human fibroblasts. This protein, designated PGB, has been purified at least 500-fold by ammonium sulfate precipitation followed by DEAE-Sepharose column chromatography and affinity chromatography in a column of d(GA)-Sepharose. Electrophoretic mobility shift assays revealed that the PGB protein bound most avidly d(GA)n and d(GT)n tracts of n > 5. It also bound other G-rich DNA sequence repeats, including dGn tracts, with lower affinities. It did not manifest significant binding affinities to single stranded M13 DNA, or to the homopolynucleotides poly dA, poly dC and poly dT, or to various DNA sequence repeats which do not contain G residues, such as d(A-C)n and d(TC)n. It did not bind double stranded d(T-C)n.d(GA)n tracts or other double stranded DNA sequences. In glycerol gradient centrifugation assays the d(GA)n- and the d(GT)n-binding activities cosedimented as a homogeneous protein species having an S20,w = 9.4 +/- 0.7 and an estimated native molecular weight of 190,000 +/- 7,000. UV crosslinking assays revealed that the protein contains 33.6 +/- 2.1 kd subunits which bind d(GA)n and d(GT)n sequences. However, SDS-polyacrylamide gel electrophoresis of the purified protein followed by silver staining indicated that it may also contain other subunits that do not contact the DNA. It is proposed that binding of the PGB protein to single stranded d(GA)n or d(GT)n tracts in double stranded topologically restricted DNA may stimulate strand separation and formation of triple helices or other unusual DNA structures.

UI MeSH Term Description Entries
D008863 Microspheres Small uniformly-sized spherical particles, of micrometer dimensions, frequently labeled with radioisotopes or various reagents acting as tags or markers. Latex Beads,Latex Particles,Latex Spheres,Microbeads,Bead, Latex,Beads, Latex,Latex Bead,Latex Particle,Latex Sphere,Microbead,Microsphere,Particle, Latex,Particles, Latex,Sphere, Latex,Spheres, Latex
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011089 Polydeoxyribonucleotides A group of 13 or more deoxyribonucleotides in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Polydeoxyribonucleotide
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

A Aharoni, and N Baran, and H Manor
March 1992, Nucleic acids research,
A Aharoni, and N Baran, and H Manor
September 1998, Biochemistry,
A Aharoni, and N Baran, and H Manor
April 2023, International journal of molecular sciences,
A Aharoni, and N Baran, and H Manor
June 1994, Molecular and cellular biology,
A Aharoni, and N Baran, and H Manor
January 2001, Molekuliarnaia biologiia,
A Aharoni, and N Baran, and H Manor
June 2009, Molecular and biochemical parasitology,
Copied contents to your clipboard!