Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. 1993

L S Beese, and J M Friedman, and T A Steitz
Department of Molecular Biophysics, Yale University, New Haven, Connecticut 06511.

Crystal structures of the Klenow fragment (KF) of DNA polymerase I from Escherichia coli complexed with deoxynucleoside triphosphate (dNTP) or with pyrophosphate (PPi) determined to 3.9-A resolution by X-ray crystallography show these molecules binding within the cleft of the polymerase domain and surrounded by residues previously implicated in dNTP binding. The dNTP binds adjacent to the O-helix [Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G., & Steitz, T. A. (1985a) Nature 313, 762-766] with its triphosphate moiety anchored by three positively charged residues, Arg 754, Arg 682, and Lys 758, plus His 734 and Gln 708. The dNTP binding site observed in the crystal is consistent with the results of chemical modification including cross-linking and is also near many of the amino acid residues whose mutation affects catalysis [Polesky, A. H., Steitz, T. A., Grindley, N. D. F., & Joyce, C. M. (1990) J. Biol. Chem. 265, 14579-14591; Polesky, A. H., Dahlberg, M. E., Benkovic, S. J., Grindley, N. D. F., & Joyce, C. M. (1992) J. Biol. Chem. 267, 8417-8428]. However, we conclude that the position of at least the dNMP moiety of dNTP in the binary complex is not likely to be the same as in its catalytically relevant complex with primer-template DNA.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

L S Beese, and J M Friedman, and T A Steitz
May 1998, Protein science : a publication of the Protein Society,
L S Beese, and J M Friedman, and T A Steitz
August 2015, Journal of the American Chemical Society,
L S Beese, and J M Friedman, and T A Steitz
May 2020, Cold Spring Harbor protocols,
L S Beese, and J M Friedman, and T A Steitz
August 1996, The Journal of biological chemistry,
L S Beese, and J M Friedman, and T A Steitz
January 1995, Methods in enzymology,
L S Beese, and J M Friedman, and T A Steitz
September 2017, Proceedings of the National Academy of Sciences of the United States of America,
L S Beese, and J M Friedman, and T A Steitz
January 1991, Biochemistry,
L S Beese, and J M Friedman, and T A Steitz
April 1993, Science (New York, N.Y.),
Copied contents to your clipboard!