Macrophage colony-stimulating factor and granulocyte-macrophage colony-stimulating factor stimulate the synthesis of plasminogen-activator inhibitors by human monocytes. 1993

J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
Department of Medicine, University of Melbourne, Australia.

Macrophage colony-stimulating factor (M-CSF or CSF-1) and granulocyte-macrophage CSF (GM-CSF) have been shown to increase human monocyte urokinase-type plasminogen-activator (u-PA) activity with possible consequences for cell migration and tissue remodeling; because monocyte u-PA activity is likely to be controlled in part also by the PA inhibitors (PAIs) made by the cell, the effect of M-CSF and GM-CSF on human monocyte PAI-2 and PAI-1 synthesis was investigated. To this end, elutriation-purified human monocytes were treated in vitro with purified recombinant human M-CSF and GM-CSF, and PAI-2 and PAI-1 antigen and mRNA levels measured by specific enzyme-linked immunosorbent assays and Northern blot, respectively. Each CSF could enhance the protein and mRNA levels of PAI-2 and PAI-1 at similar concentrations for each product. This similar regulation of monocyte PAI expression in response to the CSFs contrasted with that found for the effects of lipopolysaccharide, transforming growth factor-beta and a glucocorticoid. Therefore, PAIs may be modulating the effects of the CSFs on monocyte u-PA activity at sites of inflammation and tissue remodeling.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016173 Macrophage Colony-Stimulating Factor A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR). CSF-1,CSF-M,Colony-Stimulating Factor 1,Colony-Stimulating Factor, Macrophage,M-CSF,Colony Stimulating Factor 1,Colony Stimulating Factor, Macrophage
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
April 1987, Blood,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
January 1985, Nature,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
July 1990, Journal of immunology (Baltimore, Md. : 1950),
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
January 1989, Biotechnology therapeutics,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
January 1993, Journal of immunology (Baltimore, Md. : 1950),
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
May 1990, Experimental hematology,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
July 1992, The New England journal of medicine,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
July 1992, The New England journal of medicine,
J A Hamilton, and G A Whitty, and H Stanton, and J Wojta, and M Gallichio, and K McGrath, and G Ianches
June 1989, Agents and actions,
Copied contents to your clipboard!