Rat mesangial cell hypertrophy in response to transforming growth factor-beta 1. 1993

M E Choi, and E G Kim, and Q Huang, and B J Ballermann
Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Central features of progressive glomerular sclerosis are initial glomerular hypertrophy and subsequent accumulation of extracellular matrix proteins. Since TGF-beta 1 may play a key role in this glomerular response to injury, the present study sought to explore further TGF-beta 1 actions and regulated expression of its receptor in rat mesangial cells. The rat TGF-beta type II receptor (TGF-beta RII) homolog was cloned by screening a rat kidney cDNA library with a human TGF-beta RII cDNA probe, and sequenced. Expression of this receptor subtype in rat mesangial cells was then demonstrated by RNase protection assay, and by Northern blot analysis of poly (A)+ RNA, TGF-beta RII expression was down-regulated in cells treated with exogenous TGF-beta 1. Affinity cross linking studies demonstrated presence of this receptor on cell surface. Rat mesangial cells also expressed TGF-beta 1 and autoinduction by TGF-beta 1 was observed in the same cells, suggesting that this polypeptide may act in an autocrine fashion on mesangial cells, and that it may stimulate a positive autoamplification loop. TGF-beta 1 inhibited mesangial cell proliferation and stimulated significant overall protein and collagen production. Furthermore, mesangial cell size increased in response to chronic TGF-beta 1 treatment. These findings demonstrate that rat mesangial cells express key components of the TGF-beta system and raise the intriguing possibility that in the glomerular mesangium, TGF-beta 1 may not only induce extracellular matrix synthesis, but may also participate in the process of glomerular hypertrophy in response to injury.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

M E Choi, and E G Kim, and Q Huang, and B J Ballermann
November 1995, Chinese medical journal,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
August 1992, The Journal of clinical investigation,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
December 1992, Kidney international,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
August 1996, Kidney international,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
August 2001, Kidney international,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
January 2001, Transplantation proceedings,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
August 1994, Kidney international,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
August 1989, Clinical and experimental immunology,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
July 1995, The Journal of investigative dermatology,
M E Choi, and E G Kim, and Q Huang, and B J Ballermann
December 1998, Kidney international,
Copied contents to your clipboard!