Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. 1993

E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
Ligand Pharmaceuticals Inc., San Diego, California 92121.

Two distinct isoforms of the human progesterone receptor (hPR-A and hPR-B) have been identified previously. They differ only in that hPR-B contains an additional 164 amino acids at the amino terminus. Among various species these two forms arise as a result of either alternate initiation of translation from the same mRNA or by transcription from alternate promoters within the same gene. In order to understand the reason for their existence, we studied the transcriptional capacity of these individual receptors and observed that their activity was influenced strongly by cell and promoter context. More surprising was the observation that in promoter and cell contexts where hPR-A was inactive, it acted as a potent trans-dominant repressor of hPR-B-mediated transcription. This event occurred at substoichiometric concentrations of hPR-A and was hormone dependent. Human PR-A was not a general repressor of ligand-mediated transcription, as it had no effect on vitamin D receptor function. Interestingly, hPR-A but not hPR-B was capable of a similar inhibition of glucocorticoid, androgen, and mineralocorticoid receptor-mediated gene transcription. This suggests a specific role for the hPR-A isoform in this regulatory process. The trans-dominant effects of hPR-A were induced also by the antiprogestins ZK112993 and ZK98299 and a DNA binding defective hPR-A mutant, suggesting that the inhibitory function of hPR-A does not require DNA binding. The dual role of hPR-A as an activator or repressor of transcription defines a potential mechanism by which cells can generate dissimilar responses to a single hormone and provides a molecular explanation for the existence of two distinct forms of the hPR.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
April 2009, Molecular endocrinology (Baltimore, Md.),
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
February 2007, The EMBO journal,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
March 2015, Reproductive sciences (Thousand Oaks, Calif.),
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
February 2007, Proceedings of the National Academy of Sciences of the United States of America,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
December 2001, Journal of immunology (Baltimore, Md. : 1950),
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
December 2014, The EMBO journal,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
September 1993, Endocrinology,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
January 2006, Epigenetics,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
September 2008, Breast cancer research and treatment,
E Vegeto, and M M Shahbaz, and D X Wen, and M E Goldman, and B W O'Malley, and D P McDonnell
January 1998, Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine,
Copied contents to your clipboard!