Dominant negative inhibition by mutant thyroid hormone receptors is thyroid hormone response element and receptor isoform specific. 1993

A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
Department of Cellular and Developmental Biology, Harvard Medical School, Boston, Massachusetts 02115.

The heterogeneity of tissue-specific manifestations of generalized resistance to thyroid hormone (GRTH) could result from differential interactions between the mutant thyroid hormone (T3) receptor-beta (TR beta) on T3 response elements (TREs) in different T3-responsive genes. To explore this hypothesis, the mutant TR beta associated with kindred A, P448H; a TR beta mutant, P448L; and a comparable TR alpha mutant (P398H) were tested for intrinsic function and for inhibition of wild-type TR alpha- and -beta-induced expression from four structurally distinct TREs, the rGH ABC*, the rGH palindrome (PAL), the rat malic enzyme (ME), and the chicken lysozyme silencer F2 (F2). The relative function of the mutants was similarly reduced on the four TREs studied and was T3 concentration dependent. The TR alpha mutant retained the intrinsically greater potency characteristic of this isoform, but remained impaired with respect to wild-type TR alpha even at 500 nM T3. In general, dominant negative inhibition of wild-type TR alpha and -beta function was dependent upon the T3 concentration, as expected from the decreased affinity for ligand conferred by this mutation. A T3 concentration sufficient to relieve the inhibition of wild-type TR function on the ABC*, PAL, and ME TREs (50 nM) had no effect on inhibition of the F2 TRE by the mutant TRs. Receptor isoform preferential inhibition was observed on the ABC*, PAL, and ME TREs by the mutant TRs. Thus, both TRE structure and the isoform of endogenously active receptor could determine the degree of inhibition of a specific gene in GRTH individuals. Further, the lack of dominant negative potentials does not explain the absence of TR alpha mutations in GRTH kindreds.

UI MeSH Term Description Entries
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011988 Receptors, Thyroid Hormone Specific high affinity binding proteins for THYROID HORMONES in target cells. They are usually found in the nucleus and regulate DNA transcription. These receptors are activated by hormones that leads to transcription, cell differentiation, and growth suppression. Thyroid hormone receptors are encoded by two genes (GENES, ERBA): erbA-alpha and erbA-beta for alpha and beta thyroid hormone receptors, respectively. Diiodotyrosine Receptors,Receptors, Diiodotyrosine,Receptors, Thyroxine,Receptors, Triiodothyronine,T3 Receptors,T4 Receptors,Thyroid Hormone Receptors,Thyroxine Receptors,Triiodothyronine Receptors,DIT Receptors,Diiodotyrosine Receptor,MIT Receptors,Monoiodotyrosine Receptors,Receptors, DIT,Receptors, MIT,Receptors, Monoiodotyrosine,Receptors, T3,Receptors, T4,T3 Receptor,T4 Receptor,Thyroid Hormone Receptor,Thyroxine Receptor
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
July 1993, The Journal of biological chemistry,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
June 1991, The Journal of clinical investigation,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
February 1996, Proceedings of the National Academy of Sciences of the United States of America,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
April 1999, Thyroid : official journal of the American Thyroid Association,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
March 1992, Endocrinology,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
September 2000, Molecular endocrinology (Baltimore, Md.),
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
December 1997, Endocrinology,
A M Zavacki, and J W Harney, and G A Brent, and P R Larsen
December 1990, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!