cAMP-dependent protein kinase differentially regulates prestalk and prespore differentiation during Dictyostelium development. 1993

S K Mann, and R A Firtel
Department of Biology, University of California, San Diego, La Jolla 92093-0634.

We and others have previously shown that cAMP-dependent protein kinase (PKA) activity is essential for aggregation, induction of prespore gene expression and multicellular development in Dictyostelium. In this manuscript, we further examine this regulatory role. We have overexpressed the Dictyostelium PKA catalytic subunit (PKAcat) in specific cell types during the multicellular stages, using prestalk and prespore cell-type-specific promoters to make PKA activity constitutive in these cells (independent of cAMP concentration). To examine the effects on cell-type differentiation, we cotransformed the PKAcat-expressing vectors with reporter constructs expressing lacZ from four cell-type-specific promoters: ecmA (specific for prestalk A cells); ecmB (specific for prestalk B and anterior-like cells in the slug); ecmB delta 89 (specific for stalk cells); and SP60 (prespore-cell-specific). By staining for beta-galactosidase expression histologically at various stages of development in individual strains, we were able to dissect the morphological changes in these strains, examine the spatial localization of the individual cell types, and understand the possible roles of PKA during multicellular development. Expression of PKAcat from either the ecmA or ecmB prestalk promoters resulted in abnormal development that arrested shortly after the mound stage, producing a mound with a round apical protrusion at the time of tip formation. Prestalk A and prestalk B cells were localized in the central region and the apical mound in the terminal differentiated aggregate, while prespore cells showed an aberrant spatial localization. Consistent with a developmental arrest, these mounds did not form either mature spores or stalk cells and very few cells expressed a stalk-cell-specific marker. Expression of PKAcat from the prespore promoter resulted in abnormal morphogenesis and accelerated spore cell differentiation. When cells were plated on agar, a fruiting body was formed with a very large basal region, containing predominantly spores, and a small, abnormal sorocarp. Mature spore cells were first detected by 14 hours, with maximal levels reached by 18-20 hours, in contrast to 24-26 hours in wild-type strains. When cells were plated on filters, they produced an elongated tip from a large basal region, which continued to elongate as a tubular structure and produce a 'slug-like' structure at the end. The slug was composed predominantly of prestalk cells with a few prespore cells restricted to the junction between the 'slug' and tube. As the slug migrated, these prespore cells were found in the tube, while new prespore cells appeared at the slug/tube junction, suggesting a continual differentiation of new prespore cells at the slug's posterior.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S K Mann, and R A Firtel
January 1986, Current topics in developmental biology,
S K Mann, and R A Firtel
January 1992, Developmental biology,
S K Mann, and R A Firtel
June 2005, Developmental biology,
Copied contents to your clipboard!