Dopaminergic modulation of rod pathway signals does not affect the scotopic ERG of cat at dark-adapted threshold. 1993

F Naarendorp, and P F Hitchock, and P A Sieving
Kellogg Eye Center, Department of Ophthalmology, University of Michigan, Ann Arbor 48105.

1. Two rod-driven electroretinogram (ERG) components were recorded to monitor scotopic retinal signals during experimental manipulation of dopamine and gamma-aminobutyric acid (GABA) in normal cat eyes and in eyes pretreated with 6-hydroxydopamine (6-OHDA). The scotopic threshold response (STR) was elicited near absolute threshold to monitor signals traversing the rod pathway near quantal threshold; scotopic PII, which normally begins approximately 2 log units higher, was also monitored. Responses were evaluated by V-log I curves and criterion amplitudes after intravitreal drug injections into intact eyes in vivo. The depletion of dopaminergic cells by pretreating with 6-OHDA was confirmed histologically by immunocytochemical methods. 2. Dopamine abolished the STR and markedly decreased PII in the normal eye. Both 6-OHDA pretreatment and application of the dopamine antagonist, haloperidol, increased the STR amplitudes, but only for stimuli beginning 2 log units above threshold; PII amplitude also was increased. However, neither 6-OHDA pretreatment nor haloperidol affected the STR near absolute threshold. 3. Both GABA and bicuculline suppressed the STR in the normal eye. However, when applied to eyes pretreated with 6-OHDA or concurrent with haloperidol, bicuculline enhanced the STR. GABA enhanced the PII amplitude in the normal eye but had no effect in eyes pretreated with 6-OHDA or in the presence of haloperidol. 4. These results suggest that 1) dopaminergic activity modulates signals in the rod pathway at higher stimulus intensities but not near absolute threshold and 2) GABA can affect the scotopic PII component by acting through dopaminergic cells in the dark-adapted retina.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003623 Dark Adaptation Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation. Scotopic Adaptation,Adaptation, Dark,Adaptation, Scotopic
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004596 Electroretinography Recording of electric potentials in the retina after stimulation by light. Electroretinographies
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol

Related Publications

F Naarendorp, and P F Hitchock, and P A Sieving
June 1989, Journal of neurophysiology,
F Naarendorp, and P F Hitchock, and P A Sieving
April 2021, Investigative ophthalmology & visual science,
F Naarendorp, and P F Hitchock, and P A Sieving
September 2002, The Journal of physiology,
F Naarendorp, and P F Hitchock, and P A Sieving
January 1979, Vision research,
F Naarendorp, and P F Hitchock, and P A Sieving
January 2001, Visual neuroscience,
F Naarendorp, and P F Hitchock, and P A Sieving
January 1991, Vision research,
F Naarendorp, and P F Hitchock, and P A Sieving
July 2011, Journal of vision,
F Naarendorp, and P F Hitchock, and P A Sieving
January 2004, Veterinary ophthalmology,
F Naarendorp, and P F Hitchock, and P A Sieving
December 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!