A hydrophilic resin-embedding method for light and electron microscopic detection of tissue anionic sites with cationic colloidal iron: as applied to mouse Paneth cells. 1993

A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
Department of Anatomy, Okayama University School of Medicine, Japan.

A cationic colloidal iron method was introduced for electron microscopic detection of anionic sites in hydrophilic resin-embedded specimens, and the method was applied to Paneth cells of the mouse jejunum. Mouse jejunal blocks were embedded in hydrophilic acrylic resin (LR White), cut into ultrathin sections, stained with the diluted cationic colloidal iron, and exposed to osmium vapor. The jejunal tissues, including the Paneth cells, embedded in hydrophilic resin were reactive to the fine cationic colloidal iron. At pH value 1.5, fine electron dense colloidal iron deposited along the rims of the secretory granules and the Golgi apparatus of the Paneth cell. Colloidal particles distributed on the osmiophilic reticular structures in the rim and in dot-like fashion lined the border between the granular core and rim. At pH value 4.0, ribosomes reacted to cationic colloidal iron particles in addition to the granular rims and Golgi apparatus. At pH 7.0, even the cores of the secretory granules were stained. Semi-thin sections prepared from the LR White-embedded specimens and stained at pH 1.5 with the diluted (1:3 in volume) cationic colloidal iron showed sufficient Prussian blue reaction for light microscopy in the rims of Paneth granules and mucus of goblet cells. This method is therefore useful for correlative light and electron microscopic detection of tissue anionic sites, including sulfate, carboxyl and phosphate groups, at various pH values.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D012116 Resins, Plant Flammable, amorphous, vegetable products of secretion or disintegration, usually formed in special cavities of plants. They are generally insoluble in water and soluble in alcohol, carbon tetrachloride, ether, or volatile oils. They are fusible and have a conchoidal fracture. They are the oxidation or polymerization products of the terpenes, and are mixtures of aromatic acids and esters. Most are soft and sticky, but harden after exposure to cold. (From Grant & Hackh's Chemical Dictionary, 5th ed & Dorland, 28th ed) Plant Resins
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D003102 Colloids Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other. Hydrocolloids,Colloid,Hydrocolloid
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion

Related Publications

A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
October 1994, Archives of histology and cytology,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
October 1995, Archives of histology and cytology,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
February 1977, Kaibogaku zasshi. Journal of anatomy,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
October 1990, American biotechnology laboratory,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
December 1986, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
September 1977, Experimental eye research,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
May 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A Ohtsuka, and A Kikuta, and T Taguchi, and T Murakami
August 1998, Archives of histology and cytology,
Copied contents to your clipboard!