The basic-helix-loop-helix domain of Drosophila lethal of scute protein is sufficient for proneural function and activates neurogenic genes. 1994

U Hinz, and B Giebel, and J A Campos-Ortega
Institut für Entwicklungsbiologie, Universität zu Köln, Federal Republic of Germany.

The development of most epidermal sensory organs in Drosophila is controlled by achaete and scute, two of the genes of the achaete-scute complex (AS-C). The genes of the AS-C encode members of the basic-helix-loop-helix (bHLH) class of transcriptional regulators, and their activity defines proneural cell clusters in the imaginal discs from which sensory organ mother cells are singled out by a process of lateral inhibition. Ectopic expression of lethal of scute, another member of the AS-C, normally dispensable for sensory organ development in the adult, promotes this process independently of the activity of the other AS-C genes. This demonstrates a high degree of functional redundancy of the products of the AS-C. Furthermore, neurogenic genes are activated in ectopic proneural clusters, allowing development of epidermal progenitor cells. Finally, the bHLH domain is necessary and sufficient to mediate the proneural function, to activate neurogenic genes, and to allow lateral inhibition.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D009424 Nervous System Physiological Phenomena Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic

Related Publications

U Hinz, and B Giebel, and J A Campos-Ortega
November 1996, Proceedings of the National Academy of Sciences of the United States of America,
U Hinz, and B Giebel, and J A Campos-Ortega
January 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
U Hinz, and B Giebel, and J A Campos-Ortega
February 1997, Current biology : CB,
U Hinz, and B Giebel, and J A Campos-Ortega
August 1997, Cancer research,
U Hinz, and B Giebel, and J A Campos-Ortega
March 1991, Science (New York, N.Y.),
U Hinz, and B Giebel, and J A Campos-Ortega
January 2008, Molecular and cellular biology,
U Hinz, and B Giebel, and J A Campos-Ortega
March 2007, The Journal of biological chemistry,
Copied contents to your clipboard!