Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. 1994

J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030.

Dosage compensation in Drosophila occurs by an increase in transcription of genes on the X chromosome in males. This elevated expression requires the function of at least four loci, known collectively as the male-specific lethal (msl) genes. The proteins encoded by two of these genes, maleless (mle) and male-specific lethal-1 (msl-1), are found associated with the X chromosome in males, suggesting that they act as positive regulators of dosage compensation. A specific acetylated isoform of histone H4, H4Ac16, is also detected predominantly on the male X chromosome. We have found that MLE and MSL-1 bind to the X chromosome in an identical pattern and that the pattern of H4Ac16 on the X is largely coincident with that of MLE/MSL-1. We fail to detect H4Ac16 on the X chromosome in homozygous msl males, correlating with the lack of dosage compensation in these mutants. Conversely, in Sxl mutants, we detect H4Ac16 on the female X chromosomes, coincident with an inappropriate increase in X chromosome transcription. These data suggest that synthesis or localization of H4Ac16 is controlled by the dosage compensation regulatory hierarchy. Dosage compensation may involve H4Ac16 function, potentially through interaction with the product of the msl genes.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004303 Dosage Compensation, Genetic Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female. Dosage Compensation (Genetics),Gene Dosage Compensation,Hypertranscription, X-Chromosome,X-Chromosome Hypertranscription,Compensation, Dosage (Genetics),Compensation, Gene Dosage,Compensation, Genetic Dosage,Dosage Compensation, Gene,Gene Dosage Compensations,Genetic Dosage Compensation,Genetic Dosage Compensations,Hypertranscription, X Chromosome,X Chromosome Hypertranscription
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005804 Genes, Lethal Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability. Alleles, Lethal,Allele, Lethal,Gene, Lethal,Lethal Allele,Lethal Alleles,Lethal Gene,Lethal Genes
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000107 Acetylation Formation of an acetyl derivative. (Stedman, 25th ed) Acetylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
September 1994, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
May 1996, Science (New York, N.Y.),
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
May 1996, Science (New York, N.Y.),
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
May 1996, Science (New York, N.Y.),
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
August 2009, Nature structural & molecular biology,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
May 2012, Molecular and cellular biology,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
November 2012, Molecular cell,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
February 1997, Cell,
J R Bone, and J Lavender, and R Richman, and M J Palmer, and B M Turner, and M I Kuroda
March 1992, Molecular reproduction and development,
Copied contents to your clipboard!