Metabolic control in streptozotocin diabetic rats following transplantation of microencapsulated pancreatic islets. 1993

D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
Department of Medicine, Southampton University Hospitals, United Kingdom.

Microencapsulated islet grafts implanted into the peritoneal cavity of a variety of animal models of diabetes have been shown to reverse hyperglycaemia over prolonged periods without immunosuppression. Here, effects of these grafts on intermediary metabolites, diurnal blood glucose and glycated haemoglobin were studied in streptozotocin-diabetic Wistar rats. Following transplantation (approximately 3000 islets) glucose and the ketone 3-hydroxybutyrate fell significantly (glucose: 19.1 +/- 0.6 (SD) to 9.2 +/- 4.3 mmol/l, p < 0.01; 3-hydroxybutyrate: 1.51 +/- 0.48 to 0.55 +/- 0.38 mmol/l, p < 0.02) and remained within/close to the normal range for at least four weeks. In control diabetic animals, values remained abnormally elevated. There was no difference in lactate, alanine or glycerol between the two groups. In transplanted animals there was a marked variation in blood glucose over a 24h period, values being low during daylight hours but with nocturnal peaks (up to 25 mmol/l) during the animals' normal feeding time. Glycated haemoglobin was also lower in transplanted animals but did not return to normal and the difference was not significant. In conclusion, microencapsulated islet grafts ameliorated the diabetic state. However, normal metabolic homeostasis was not achieved. The intraperitoneal site precludes direct graft vascular access and this may be a contributory factor. Additionally, daytime blood sugar values in murine models of diabetes may be a poor guide to graft function and glucose tolerance.

UI MeSH Term Description Entries
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D006442 Glycated Hemoglobin Products of non-enzymatic reactions between GLUCOSE and HEMOGLOBIN (occurring as a minor fraction of the hemoglobin of ERYTHROCYTES.) It generally refers to glycated HEMOGLOBIN A. Hemoglobin A1c (Hb A1c) is hemoglobin A with GLYCATION on a terminal VALINE of the beta chain. Glycated hemoglobin A is used as an index of the average blood sugar level over a lifetime of erythrocytes. Fructated Hemoglobins,Glycohemoglobin,Glycohemoglobin A,Glycohemoglobins,Glycosylated Hemoglobin A,Hb A1c,HbA1,Hemoglobin A(1),Hemoglobin A, Glycosylated,Glycated Hemoglobin A,Glycated Hemoglobin A1c,Glycated Hemoglobins,Glycosylated Hemoglobin A1c,Hb A1,Hb A1a+b,Hb A1a-1,Hb A1a-2,Hb A1b,Hemoglobin, Glycated A1a-2,Hemoglobin, Glycated A1b,Hemoglobin, Glycosylated,Hemoglobin, Glycosylated A1a-1,Hemoglobin, Glycosylated A1b,A1a-1 Hemoglobin, Glycosylated,A1a-2 Hemoglobin, Glycated,A1b Hemoglobin, Glycated,A1b Hemoglobin, Glycosylated,Glycated A1a-2 Hemoglobin,Glycated A1b Hemoglobin,Glycosylated A1a-1 Hemoglobin,Glycosylated A1b Hemoglobin,Glycosylated Hemoglobin,Hemoglobin A, Glycated,Hemoglobin A1c, Glycated,Hemoglobin A1c, Glycosylated,Hemoglobin, Glycated,Hemoglobin, Glycated A1a 2,Hemoglobin, Glycosylated A1a 1,Hemoglobins, Fructated,Hemoglobins, Glycated
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006885 Hydroxybutyrates Salts and esters of hydroxybutyric acid. Hydroxybutyric Acid Derivatives,Hydroxybutyric Acids,Acid Derivatives, Hydroxybutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016381 Islets of Langerhans Transplantation The transference of pancreatic islets within an individual, between individuals of the same species, or between individuals of different species. Grafting, Islets of Langerhans,Pancreatic Islets Transplantation,Transplantation, Islets of Langerhans,Transplantation, Pancreatic Islets,Islands of Langerhans Transplantation,Islands of Pancreas Transplantation,Islet Transplantation,Transplantation, Islands of Langerhans,Transplantation, Islands of Pancreas,Transplantation, Islet,Islet Transplantations,Islets Transplantation, Pancreatic,Transplantations, Islet
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
September 1981, Science (New York, N.Y.),
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
January 1981, Zeitschrift fur experimentelle Chirurgie,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
February 1990, Experimental and clinical endocrinology,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
May 2009, Archives of physiology and biochemistry,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
February 1992, Transplantation proceedings,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
June 1992, Transplantation proceedings,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
March 1994, Artificial organs,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
November 2018, Xenotransplantation,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
August 1994, The Journal of veterinary medical science,
D R Cole, and M Waterfall, and L Ashworth, and A J Bone, and J D Baird
July 1994, Transplant international : official journal of the European Society for Organ Transplantation,
Copied contents to your clipboard!