Activation of Raf-1 and mitogen-activated protein kinases during monocytic differentiation of human myeloid leukemia cells. 1994

S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
Laboratory of Clinical Pharmacology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

Treatment of human myeloid leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC), is associated with induction of monocytic differentiation. Since PKC can act immediately upstream to the cytoplasmic Raf-1 serine/threonine protein kinase, we studied activation of Raf-1 during induction of the differentiated monocytic phenotype. The results demonstrate that Raf-1 is activated during TPA-induced monocytic differentiation of HL-60 cells. In contrast, there was little effect of TPA on this kinase in an HL-60 variant, designated HL-525, which is resistant to TPA-induced differentiation. Treatment of both HL-60 and HL-525 cells with okadaic acid, an inhibitor of serine/threonine protein phosphatases 1 and 2A, was associated with Raf-1 activation and induction of the monocytic phenotype. Since Raf-1 can activate the mitogen-activated protein (MAP) kinases, we also studied the relationship between MAP kinase activation and monocytic differentiation. Treatment of HL-60, but not HL-525, cells with TPA was associated with increased MAP kinase activity as determined by phosphorylation of myelin basic protein and the c-Jun Y peptide. Okadaic acid-induced differentiation of both HL-60 and HL-525 cells was similarly accompanied by increases in MAP kinase activity. These findings indicated that activation of Raf-1/MAP kinase signaling is associated with induction of a differentiated monocytic phenotype and that okadaic acid bypasses a defect in this cascade in TPA-treated HL-525 cells. While recent studies have shown that HL-525 cells are deficient in PKC beta, the present results demonstrate that PKC beta expression is up-regulated in the HL-525 variant by treatment with retinoic acid. The results also demonstrate that retinoic acid-treated HL-525 cells respond to TPA with activation of Raf-1 and MAP kinase, as well as induction of monocytic differentiation. Taken together, the results indicate that activation of Raf-1/MAP kinase signaling is associated with monocytic differentiation and that stimulation of serine/threonine protein phosphorylation by TPA or okadaic acid is sufficient for reversal of the leukemic HL-60 phenotype.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
February 1998, The Journal of biological chemistry,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
December 1994, Science (New York, N.Y.),
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
December 2005, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
February 2000, European journal of pharmacology,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
March 2001, The Journal of biological chemistry,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
May 2001, Journal of cellular physiology,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
May 2000, Circulation research,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
April 2001, Clinical and experimental immunology,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
November 2003, The Journal of surgical research,
S Kharbanda, and A Saleem, and Y Emoto, and R Stone, and U Rapp, and D Kufe
March 2000, The Journal of biological chemistry,
Copied contents to your clipboard!