Evidence for strained interactions between side-chains and the polypeptide backbone. 1994

W E Stites, and A K Meeker, and D Shortle
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185.

In most proteins, a small but significant fraction of residues adopt phi,psi angles that generate unfavorable steric interactions between side-chain atoms and the peptide backbone. For the small protein staphylococcal nuclease, the X-ray structure reveals that 18 of 133 residues occupy unusual and, presumably, energetically unfavorable backbone conformations. To quantify the amount of strain energy generated by these local interactions, we have analyzed the changes in stability that accompany replacement of the wild-type side-chain with glycine, a residue that can access a much larger set of phi,psi angles without energy penalty. To correct for the many other sources of stability loss that might accompany this mutation, the glycine mutant was compared to an alanine mutant at the same position and the resulting free energy difference delta delta GG-->A was then compared to the average delta delta GG-->A at all other, unstrained positions in the nuclease occupied by similar amino acid types. In addition, potential steric clashes were introduced by substituting alanine at each of six positions occupied in the wild-type by glycine with phi,psi angles that are unfavorable for all other residue types. The data suggest that residues with phi,psi angles outside the preferred alpha-helical and beta-sheet regions represent sites of local strain energy that lower the stability of the native state by 1 to 2 kcal/mol and, in some cases, as much as 3 to 4 kcal/mol. Given that 10 to 20% of residues in globular proteins adopt phi,psi angles outside the preferred alpha-helical and beta-sheet regions, this implies that there is on the order of 20 kcal/mol of strain energy in a protein of 100 residues that may be relieved by appropriate mutations.

UI MeSH Term Description Entries
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

W E Stites, and A K Meeker, and D Shortle
October 1974, Journal of biochemistry,
W E Stites, and A K Meeker, and D Shortle
February 2005, Chemphyschem : a European journal of chemical physics and physical chemistry,
W E Stites, and A K Meeker, and D Shortle
August 1988, Biophysical chemistry,
W E Stites, and A K Meeker, and D Shortle
August 1999, Proceedings of the National Academy of Sciences of the United States of America,
W E Stites, and A K Meeker, and D Shortle
October 2006, The Journal of chemical physics,
W E Stites, and A K Meeker, and D Shortle
July 1995, Protein science : a publication of the Protein Society,
W E Stites, and A K Meeker, and D Shortle
March 1974, Journal of molecular biology,
W E Stites, and A K Meeker, and D Shortle
November 1995, Journal of molecular biology,
Copied contents to your clipboard!