Glycosylation-dependent inactivation of the ecotropic murine leukemia virus receptor. 1994

M V Eiden, and K Farrell, and C A Wilson
Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, Maryland 20892.

The ecotropic murine leukemia virus (E-MuLV) receptor expressed on Mus dunni tail fibroblast (MDTF) cells is a receptor for all E-MuLVs with the notable of Moloney murine leukemia virus (Mo-MuLV). Substitution of isoleucine for valine at position 214 in the third extracellular region (the putative E-MuLV binding site) of the MDTF receptor molecule allows this molecule to function as a Mo-MuLV receptor (M.V. Eiden, K. Farrell, J. Warsowe, L. A. Mahan, and C. A. Wilson, J. Virol. 67:4056-4061, 1993). We have now determined that treating MDTF cells with tunicamycin, an inhibitor of N-linked glycosylation, also renders them susceptible to Mo-MuLV infection. Two potential N-linked glycosylation sites are present in the third extracellular regions of both the NIH 3T3 and MDTF ecotropic receptors. The glycosylation site at position 229 of the MDTF receptor cDNA was eliminated by substituting a threonine codon for the asparagine codon. Mo-MuLV-resistant human HOS cells, expressing this form of the receptor, are susceptible to Mo-MuLV infection. Thus, our studies suggest that without a glycan moiety at position 229, the valine residue at 214 is no longer restrictive for Mo-MuLV infection. BHK-21 and CHO K1 hamster cells also express glycosylation-inactivated forms of the ecotropic receptor. Sequence analysis of these receptors together with our analysis of MDTF receptor function suggests that a single asparagine-linked glycosylation site is responsible for glycosylation inactivation of these receptors.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D009115 Muridae A family of the order Rodentia containing 250 genera including the two genera Mus (MICE) and Rattus (RATS), from which the laboratory inbred strains are developed. The fifteen subfamilies are SIGMODONTINAE (New World mice and rats), CRICETINAE, Spalacinae, Myospalacinae, Lophiomyinae, ARVICOLINAE, Platacanthomyinae, Nesomyinae, Otomyinae, Rhizomyinae, GERBILLINAE, Dendromurinae, Cricetomyinae, MURINAE (Old World mice and rats), and Hydromyinae. Murids,Murid
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier

Related Publications

M V Eiden, and K Farrell, and C A Wilson
January 2001, Archives of virology,
M V Eiden, and K Farrell, and C A Wilson
March 1986, Journal of virology,
M V Eiden, and K Farrell, and C A Wilson
August 2003, Journal of virology,
M V Eiden, and K Farrell, and C A Wilson
August 1978, The Journal of experimental medicine,
M V Eiden, and K Farrell, and C A Wilson
August 1993, The Journal of biological chemistry,
M V Eiden, and K Farrell, and C A Wilson
September 1979, Journal of the National Cancer Institute,
Copied contents to your clipboard!