Effects of chronic ethanol administration on acetylcholinesterase activity in the somatosensory cortex and basal forebrain of the rat. 1993

M W Miller, and R W Rieck
Research Service (151), Veterans Affairs Medical Center, Iowa City, IA 52246-2208.

A chronic diet of ethanol has detrimental effects on the cholinergic system in adult humans and rats. This study examined the effects of chronic exposure to dietary ethanol on the anatomical organization of true acetylcholinesterase (AChE) active elements in rat cerebral cortex. We focused on the somatosensory cortex because of its highly organized chemical and cellular structure. Following 42 days of exposure to an ethanol diet (6.7% v/v), there were marked changes in the cortical plexus of AChE-positive fibers. The AChE-positive plexus in ethanol-treated rats was reduced in all cortical layers, in comparison to age-matched pair-fed control and chow-fed rats. The most marked reduction was evident in layers II/III, IV, and VIa. Moreover, the density of AChE-positive cell bodies was significantly reduced in the cortices of ethanol-fed rats, particularly in the deep laminae. These alterations in the chemoarchitecture of somatosensory cortex occurred in the absence of changes in the cytoarchitectonic organization of neocortex. There was no detectable ethanol-induced change in the density of Cresyl violet-stained neurons either in the horizontal limb of the diagonal band of Broca or in the nucleus basalis. The density of AChE-positive neurons in the nucleus basalis, however, was significantly lower in ethanol-fed rats than in controls. Thus, it appears that a mere 6 weeks of ethanol exposure is sufficient to alter the cholinergic innervation of the cerebral cortex. These cortical alterations occur despite the lack of an ethanol-induced death of neurons in the basal forebrain. Such changes may contribute to the memory loss associated with alcohol dementia.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D005260 Female Females
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D016548 Prosencephalon The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed) Forebrain,Forebrains

Related Publications

M W Miller, and R W Rieck
May 1994, Progress in neuro-psychopharmacology & biological psychiatry,
M W Miller, and R W Rieck
October 1990, Journal of neurophysiology,
M W Miller, and R W Rieck
October 1989, The Journal of comparative neurology,
M W Miller, and R W Rieck
September 2003, Journal of studies on alcohol,
M W Miller, and R W Rieck
May 1979, Neuroscience letters,
Copied contents to your clipboard!