Muscarinic regulation of cytosolic free calcium in canine tracheal smooth muscle cells: Ca2+ requirement for phospholipase C activation. 1993

C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
Department of Pharmacology, Chang Gung Medical College, Tao-Yuan, Taiwan.

1. The relationship between muscarinic receptor-mediated phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown and the increase of intracellular Ca2+ ([Ca2+])i has been examined in canine cultured tracheal smooth muscle cells (TSMCs). 2. Addition of acetylcholine (ACh) and carbachol led to a 2-3 fold increase in [Ca2+]i over the resting level as determined by fura-2, with half-maximal stimulation (EC50) obtained at concentrations of 97 and 340 nM, respectively. Addition of the partial agonist, bethanechol, showed a smaller increase in PIP2 turnover and [Ca2+]i than did ACh or carbachol. 3. Addition of ACh or carbachol to TSMCs that had been prelabelled with [3H]-inositol led to the rapid (5-15 s) release of inositol mono, bis and trisphosphates IP1, IP2 and IP3. The time course of IP3 accumulation is correlated with the time course of the peak rise in [Ca2+]i. 4. Inclusion of EGTA lowered the resting [Ca2+]i and markedly reduced the extent of the agonist-induced rise in [Ca2+]i. When assayed under conditions similar to those used for the [Ca2+]i measurements, EGTA reduced the muscarinic agonist-stimulated inositol phosphates (IPs) accumulation. Conversely, ionomycin could stimulate IPs accumulation and elevate [Ca2+]i. The addition of Ca2+ (2.7-617 nM) to digitonin-permeabilized TSMCs directly stimulated IPs accumulation. 5. Both Ca2+ and guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) stimulated the formation of IPs in digitonin-permeabilized TSMCs prelabelled with [3H]-inositol. A further calcium-dependent increase in IPs accumulation was obtained by inclusion of either GTP gamma S or carbachol. The combined presence of carbachol and GTP gamma S elicited a synergistic effect on IPs accumulation, with half-maximal stimulation observed at approximately 8 nM free Ca2+.6. These results indicate that (i) the magnitude of the initial rise in [Ca2+], is directly related to the production of IPs and (ii) the phospholipase C-mediated PIP2 breakdown in TSMCs is sensitive to regulation by physiologically relevant concentrations of free Ca2+ ([Ca2+]f).

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004072 Digitonin A glycoside obtained from Digitalis purpurea; the aglycone is digitogenin which is bound to five sugars. Digitonin solubilizes lipids, especially in membranes and is used as a tool in cellular biochemistry, and reagent for precipitating cholesterol. It has no cardiac effects. Digitin

Related Publications

C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
January 1991, Annals of the New York Academy of Sciences,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
June 1989, Hypertension (Dallas, Tex. : 1979),
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
November 1993, British journal of pharmacology,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
September 2005, The Journal of general physiology,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
November 1991, The American journal of physiology,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
January 1989, Fukuoka igaku zasshi = Hukuoka acta medica,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
July 1993, The American journal of physiology,
C M Yang, and S P Chou, and Y Y Wang, and J T Hsieh, and R Ong
February 1995, Biochimica et biophysica acta,
Copied contents to your clipboard!