Topology of 3 beta-hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase in adrenal cortex mitochondria and microsomes. 1994

L A Sauer, and J C Chapman, and R T Dauchy
Institute for Medical Research, Mary Imogene Bassett Hospital, Cooperstown, New York 13326.

3 beta-Hydroxy-5-ene-steroid dehydrogenase/delta 5-delta 4-isomerase (3 beta HSD) is a NAD(+)-dependent membrane-bound enzyme that catalyzes the oxidation of delta 5-3 beta-hydroxysteroids to delta 4-3-keto structures during adrenal, gonadal, and placental steroidogenesis. Enzyme activity is located in both microsomes and mitochondria. In these experiments we examined the membrane topologies of 3 beta HSD in rat and calf adrenal microsomes and mitochondria by comparing access to the active sites of coenzyme and the inhibitor mersalyl, a nonpenetrant organic mercurial anion. Microsomal activity required exogenous NAD+ and was inhibited by mersalyl, indicating that the active site faced the medium in vitro and the cytoplasm in vivo. In contrast, mitochondrial 3 beta HSD used matrix space NAD+, was inhibited by reduction of intramitochondrial NAD(P)+, and was insensitive to mersalyl. Mitochondrial activity was decreased by exogenous NADH (apparent Ki, 2.8 microM) and increased by added NAD+ (apparent Ka, 2.4 microM). However, mersalyl blocked the effects of exogenous NADH and NAD+ and returned the activity to that observed before coenzyme addition. The membrane-sidedness of the NAD+ activation was examined further in submitochondrial particles prepared by sonication of pyridine nucleotide-depleted calf adrenal cortex mitochondria. Particles were prepared in the absence or presence of 10 mM NAD+ and contained none or 2.9-7.3 nmol NAD+/mg protein, respectively. Both groups of submitochondrial particles required exogenous NAD+ for 3 beta HSD activity, indicating that the active site faced the medium (the particles were everted), and the contained NAD+ was inside the particles. However, 3 beta HSD activity was increased 12-140% in particles that contained NAD+. The results suggest that mitochondrial 3 beta HSD is an integral inner membrane protein, that the active site faces the matrix space and is influenced by coenzyme availability, and that a regulatory site(s) faces the intermembrane space. Binding of NAD+ or NADH to this external site increases or decreases, respectively, the rate of catalysis at the active site. Mitochondrial 3 beta HSD activity may be enhanced by oxidation of intermembrane space NADH via an active rotenone- and antimycin-a-insensitive NADH oxidase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008634 Mersalyl A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions. Mercuramide,Mercusal,Mersalin,Mersalyl Acid,Salyrgan,Acid, Mersalyl
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D011375 Progesterone Reductase An enzyme that catalyzes the reduction of a 3 beta-hydroxy-delta(5)-steroid to 3-oxo-delta(4)-steroid in the presence of NAD. It converts pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. EC 1.1.1.145. 3 beta-Hydroxy-delta-5-Steroid Dehydrogenase,5-Ene-3 beta-hydroxysteroid Dehydrogenase,Steroid delta(5)-3 beta-ol Dehydrogenase,3 beta Hydroxy delta 5 Steroid Dehydrogenase,5 Ene 3 beta hydroxysteroid Dehydrogenase,Dehydrogenase, 3 beta-Hydroxy-delta-5-Steroid,Dehydrogenase, 5-Ene-3 beta-hydroxysteroid,Reductase, Progesterone
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

L A Sauer, and J C Chapman, and R T Dauchy
January 1987, Journal of steroid biochemistry,
L A Sauer, and J C Chapman, and R T Dauchy
August 1995, Biochimica et biophysica acta,
L A Sauer, and J C Chapman, and R T Dauchy
October 1986, Journal of steroid biochemistry,
L A Sauer, and J C Chapman, and R T Dauchy
September 1992, The Journal of clinical endocrinology and metabolism,
L A Sauer, and J C Chapman, and R T Dauchy
March 1986, Journal of steroid biochemistry,
Copied contents to your clipboard!