Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary, and testis. 1994

V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
Clayton Foundation Laboratories for Peptide Biology, La Jolla, California 92037.

We have studied the distribution of activin receptor gene expression in the brain, pituitary, ovary, and testis of the adult rat by in situ hybridization, using probes complementary to the mRNAs encoding the mouse activin receptor subtypes II and IIB (ActRII and ActRIIB). Throughout the brain, ActRII mRNA expression was stronger than that of ActRIIB, and the patterns of expression were similar, although not identical. The most intense sites of activin receptor gene expression were the hippocampal formation, especially the dentate gyrus (ActRII), taenia tecta, and induseum griseum; the amygdala, particularly the amygdaloid-hippocampal transition zone; and throughout the cortical mantle, including the primary olfactory cortex (piriform cortex and olfactory tubercle); other regions of the cortex showing lesser degrees of hybridization included the cingulate cortex, claustrum, entorhinal cortex, and subiculum. In addition, moderate levels of expression were observed in several hypothalamic areas involved in neuroendocrine regulation, such as the suprachiasmatic, supraoptic, paraventricular, and arcuate nuclei. Moreover, activin receptors were also expressed in regions with inputs to the hypothalamus, both in the forebrain (bed nucleus of the stria terminalis and medial preoptic area) and within the brainstem (nucleus of the solitary tract, dorsal motor nucleus of the vagus, locus coeruleus, and mesencephalic raphé system). ActRII mRNA was observed in the intermediate lobe of the pituitary and, less prominently, in the anterior lobe, whereas ActRIIB appeared to be weakly expressed throughout all three pituitary divisions. In both male and female gonads, activin receptor message was clearly present in germ cells, and ActRII was the predominant form. In the ovary, in addition to an intense signal in the oocyte, activin receptor was expressed in corpus luteum and granulosa cells during diestrous day 1. In the testis, there was a strong ActRII signal in rounded spermatids, and a moderate signal in pachytene spermatocytes. In contrast, ActRIIB was absent within tubules, but weakly expressed in interstitial and Leydig cells. This is the first report of the distribution of activin receptor message in adult mammalian tissues. Although consistent with some previously suggested functional associations of activin-containing pathways in the brain, this pattern of expression suggests a greater role for activin than was previously appreciated in cortical, limbic, and somatosensory pathways and in the maturation of germ cells in the gonads of both male and female rats.

UI MeSH Term Description Entries
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur

Related Publications

V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
January 1996, The Journal of comparative neurology,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
December 2001, Molecular reproduction and development,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
January 1982, Proceedings of the Western Pharmacology Society,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
October 1995, Endocrinology,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
March 1989, Endocrinology,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
February 1996, Endocrinology,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
August 1964, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
December 1990, Endocrinology,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
August 1998, Biology of reproduction,
V A Cameron, and E Nishimura, and L S Mathews, and K A Lewis, and P E Sawchenko, and W W Vale
January 2002, General and comparative endocrinology,
Copied contents to your clipboard!