Metalloproteinase-dependent neurite outgrowth within a synthetic extracellular matrix is induced by nerve growth factor. 1994

D Muir
Department of Pediatrics and Neuroscience, University of Florida College of Medicine, Gainesville 32610.

In order to assess the requirement for matrix metalloproteinases in neuronal regeneration, in vitro neurite outgrowth by chick dorsal root ganglionic neurons (DRGn) was examined within a reconstituted extracellular matrix. For these studies, cultured neurons were treated with a synthetic peptide inhibitor of metalloproteinases (spIMP), LMHKPRCGVPDVGG. spIMP inhibited all neuronal metalloproteinase activities in zymography and substrate-release assays and was used to examine the role of metalloproteinases in neurite outgrowth by DRGn. Cultures of dissociated DRGn rapidly extended neurites on planar extracellular matrix substrates and this rate of outgrowth was not affected by adding NGF or spIMP. In contrast, neurite extension within a three-dimensional gel of extracellular matrix increased nearly threefold after adding NGF. The NGF-induced neurite penetration was negated in the presence of spIMP but not by control peptide. Similar results were obtained using explanted dorsal root ganglia. These findings suggested that NGF-induced neurite outgrowth within an extracellular matrix involves metalloproteinase activity. Zymographic analysis of media conditioned by NGF-treated DRGn revealed a pair of gelatinolytic bands with apparent molecular masses 72 and 66 kDa, which comigrated as a single 66-kDa band after activation with an organomercurial agent. The gelatinase activities were calcium- and zinc-dependent and were absent from zymograms developed in the presence of spIMP, indicating that NGF-treated DRGn release and activate a 72-kDa metalloproteinase. Samples from DRGn cultures treated with low levels of NGF contained similar amounts of latent and activated metalloproteinase, while high levels of NGF induced an apparent increase in total metalloproteinase secretion and a substantially greater proportion of activated enzyme. Western blot analysis showed this metalloproteinase was immunologically similar to 72-kDa type IV collagenase and immunoassays revealed that this matrix metalloproteinase was increased threefold by high NGF. Furthermore, after high NGF treatment, DRGn media contained sixfold more metalloproteinase activity in assays of matrix degradation. In summary, these results indicate that NGF enhanced metalloproteinase-dependent neurite outgrowth of DRGn within a reconstituted extracellular matrix. Also, NGF increased the expression and activation of 72-kDa type IV collagenase, suggesting a role for this matrix-degrading metalloproteinase in neuronal regeneration.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
Copied contents to your clipboard!