The spv virulence operon of Salmonella typhimurium LT2 is regulated negatively by the cyclic AMP (cAMP)-cAMP receptor protein system. 1994

C P O'Byrne, and C J Dorman
Department of Biochemistry, University of Dundee, Scotland.

The cyclic AMP (cAMP) receptor protein (CRP) was found to play a role in the growth phase regulation of the spv operon on the high-molecular-weight virulence plasmid of Salmonella typhimurium LT2. By using a lacZ reporter transcriptional fusion to the spvB structural gene on the single-copy virulence plasmid, it was found that while spvB transcription was induced in stationary-phase cultures, the induced level of expression was lower than that reported for the spv system in other serovars of Salmonella. Surprisingly, inactivation of the gene encoding the positive activator SpvR resulted in only a threefold reduction in spvB transcription. In contrast, spvB transcription in stationary-phase cultures was enhanced by 10-fold in mutants deficient in crp-encoded CRP or cya-encoded adenylate cyclase. Wild-type (i.e., 10-fold-lower) levels of spvB expression were restored by providing active copies of crp or cya on recombinant plasmids. Enhanced spvB transcription was not seen in crp or cya mutants in the absence of a functional spvR positive regulatory gene, showing that the cAMP-CRP system acted on spvB expression either in conjunction with or via SpvR. A lacZ transcriptional fusion to spvR could not be induced in stationary-phase cultures in the absence of functional SpvR, regardless of the cAMP-CRP status of the cells. When SpvR was provided in trans, transcription of the spvR-lacZ fusion was induced to similar levels in stationary-phase cultures with and without cAMP-CRP. These data are consistent with spvR being poorly transcribed from the single-copy virulence plasmid in S. typhimurium LT2 and with a suppression of this defect via inactivation of the cAMP-CRP system. The physiological significance of cAMP-CRP involvement in spv expression is discussed.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

C P O'Byrne, and C J Dorman
October 2018, Genetics,
C P O'Byrne, and C J Dorman
September 1990, Journal of bacteriology,
C P O'Byrne, and C J Dorman
June 1983, Journal of bacteriology,
C P O'Byrne, and C J Dorman
February 1981, Journal of bacteriology,
C P O'Byrne, and C J Dorman
September 1990, Journal of bacteriology,
C P O'Byrne, and C J Dorman
January 1977, European journal of biochemistry,
C P O'Byrne, and C J Dorman
April 1995, Journal of bacteriology,
Copied contents to your clipboard!