The importance of four histidine residues in isocitrate lyase from Escherichia coli. 1994

P Diehl, and B A McFadden
Department of Biochemistry and Biophysics, Washington State University, Pullman 99164-4660.

By site-directed mutagenesis, substitutions were made for His-184 (H-184), H-197, H-266, and H-306 in Escherichia coli isocitrate lyase. Of these changes, only mutations of H-184 and H-197 appreciably reduced enzyme activity. Mutation of H-184 to Lys, Arg, or Leu resulted in an inactive isocitrate lyase, and mutation of H-184 to Gln resulted in an enzyme with 0.28% activity. Nondenaturing polyacrylamide gel electrophoresis demonstrated that isocitrate lyase containing the Lys, Arg, Gln, and Leu substitutions at H-184 was assembled poorly into the tetrameric subunit complex. Mutation of H-197 to Lys, Arg, Leu, and Gln resulted in an assembled enzyme with less than 0.25% wild-type activity. Five substitutions for H-266 (Asp, Glu, Val, Ser, and Lys), four substitutions for H-306 (Asp, Glu, Val, and Ser), and a variant in which both H-266 and H-306 were substituted for showed little or no effect on enzyme activity. All the H-197, H-266, and H-306 mutants supported the growth of isocitrate lyase-deficient E. coli JE10 on acetate as the sole carbon source; however, the H-184 mutants did not.

UI MeSH Term Description Entries
D007522 Isocitrate Lyase A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1. Isocitrase,Isocitratase,Lyase, Isocitrate
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

P Diehl, and B A McFadden
February 1988, The Journal of biological chemistry,
P Diehl, and B A McFadden
December 1996, Archives of biochemistry and biophysics,
P Diehl, and B A McFadden
January 1989, Biochimie,
P Diehl, and B A McFadden
August 1964, Biochimica et biophysica acta,
P Diehl, and B A McFadden
June 1988, Biochemical and biophysical research communications,
P Diehl, and B A McFadden
July 1997, Current microbiology,
P Diehl, and B A McFadden
July 1988, Biochimica et biophysica acta,
P Diehl, and B A McFadden
May 1990, Archives of biochemistry and biophysics,
P Diehl, and B A McFadden
April 1997, Current microbiology,
Copied contents to your clipboard!