Highly potent transcriptional activation by 16-ene derivatives of 1,25-dihydroxyvitamin D3. Lack of modulation by 9-cis-retinoic acid of response to 1,25-dihydroxyvitamin D3 or its derivatives. 1994

J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
Department of Physiology, McGill University, Montreal, Québec, Canada.

Although several studies have been performed on the biological activities of analogs of 1,25-dihydroxyvitamin D3 (1,25-(OH)2 D3) at the whole animal and cellular levels, little work has been done to analyze their transcriptional activation properties. A highly inducible 1,25-(OH)2 D3-responsive promoter composed of three copies of the mouse osteopontin vitamin D3 response element (VDRE3) inserted upstream of a herpes simplex virus thymidine kinase promoter has been constructed, and its transcriptional properties have been analyzed by transient transfection into the monkey kidney cell line COS-7 and the rat osteoblast-like osteosarcoma line ROS 17/2.8. We have studied systematically transcriptional activation by a number of 1,25-(OH)2 D3 analogs, particularly those substituted at positions 16, 23, 26, and 27, sites that are targets for metabolism. Strikingly, except for derivatives that bind the 1,25-(OH)2 D3 receptor (VDR) very weakly, we find no parallel between the potency of action of a derivative as a transcriptional inducer and its affinity for the VDR. Derivatives substituted by multiple bonds at positions 16 and/or 23, although having varying affinities for the VDR, all stimulate transcription more potently than D3, in some cases at 100-fold lower concentrations. The peak transcriptional activity observed varies by only approximately 20% among different active analogs, indicating little difference in the activity of the VDR once bound to ligand. Gel retardation assays with ROS 17/2.8 nuclear extracts suggest that the VDR binds to the mouse osteopontin VDRE predominantly as a heterodimer with retinoid X receptor(s) (RXR(s)). We find that 9-cis-retinoic acid, the cognate ligand for RXRs, does not have a significant effect on the response of the VDRE3 promoter to 1,25-(OH)2 D3 or a number of its derivatives in ROS 17/2.8 or in COS-7 cells, under conditions in which promoters containing retinoid X response elements are activated. This suggests that 9-cis-retinoic acid may not act on the response to 1,25-(OH)2 D3 or its derivatives by directly influencing the transcriptional activity of VDR/RXR heterodimers. This promoter/reporter system should be useful for analyzing the tissue-specific transcriptional activity of 1,25-(OH)2 D3 and its derivatives in any cell type amenable to transient transfection.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010750 Phosphoproteins Phosphoprotein
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys

Related Publications

J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
October 1993, Nutrition reviews,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
February 1984, Archives of biochemistry and biophysics,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
August 1996, Leukemia research,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
June 1995, The Journal of steroid biochemistry and molecular biology,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
September 1993, Molecular and cellular biology,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
April 1986, Blood,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
November 1996, Archives of dermatological research,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
January 1990, Bone,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
February 1998, The Journal of endocrinology,
J Ferrara, and K McCuaig, and G N Hendy, and M Uskokovic, and J H White
August 1986, European journal of clinical investigation,
Copied contents to your clipboard!