Projections of GABAergic and cholinergic basal forebrain and GABAergic preoptic-anterior hypothalamic neurons to the posterior lateral hypothalamus of the rat. 1994

I Gritti, and L Mainville, and B E Jones
Istituto di Fisiologia Umana II, Università degli Studi di Milano, Italy.

Within the basal forebrain, gamma-aminobutyric acid (GABA)-synthesizing neurons are codistributed with acetylcholine-synthesizing neurons (Gritti et al. [1993] J. Comp. Neurol. 329:438-457), which constitute one of the major forebrain sources of subcortical afferents to the cerebral cortex. In the present study, descending projections of the GABAergic and cholinergic neurons were investigated to the lateral posterior hypothalamus (LHp) through which the medial forebrain bundle passes and where another major forebrain source of subcortical afferents is situated. Retrograde transport of cholera toxin b subunit (CT) from the LHp was combined with immunohistochemical staining for glutamic acid decarboxylase (GAD) and choline acetyl transferase (ChAT) using a sequential peroxidase-antiperoxidase (PAP) technique. A relatively large number of GAD+ neurons (estimated at approximately 6,200), which represented > 15% of the total population of GAD+ cells in the basal forebrain (estimated at approximately 39,000), were retrogradely labeled from the LHp. These cells were distributed through the basal forebrain cell groups, where ChAT+ cells are also located, including the medial septum and diagonal band nuclei, the magnocellular preoptic nucleus, and the substantia innominata, with few cells in the globus pallidus. In these same nuclei, a small number of ChAT+ cells were retrogradely labeled (estimated at approximately 800), which represented only a small percentage (< 5%) of the ChAT+ cell population in the basal forebrain (estimated at approximately 18,000). Both the GAD+ and ChAT+ LHp-projecting neurons represented a small subset of their respective populations in the basal forebrain, distinct from the magnocellular, presumed cortically projecting, basal neurons. In addition to the GAD+ cells in the basal forebrain, GAD+ cells in the adjacent preoptic and anterior hypothalamic regions were also retrogradely labeled in significant numbers (estimated at approximately 5,500) and proportion (> 20%) of the total population (estimated at approximately 30,000) from the LHp. The retrogradely labeled GAD+ neurons were distributed in continuity with those in the basal forebrain through the lateral preoptic area, medial preoptic area, bed nucleus of the stria terminals, and anterior and dorsal hypothalamic areas. Of the large number of cells that project to the LHp in the basal forebrain and preoptic-anterior hypothalamic regions (estimated at approximately 66,000), the GAD+ neurons represented a significant proportion (> 15%) and the ChAT+ neurons a very small proportion (approximately 2%). The relative magnitude of the GABAergic projection suggests that it may represent an important inhibitory influence of the descending efferent output from the basal forebrain and preoptic-anterior hypothalamic regions.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

I Gritti, and L Mainville, and B E Jones
February 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Gritti, and L Mainville, and B E Jones
January 1991, Behavioural brain research,
I Gritti, and L Mainville, and B E Jones
December 1975, Science (New York, N.Y.),
I Gritti, and L Mainville, and B E Jones
January 1991, The Journal of comparative neurology,
I Gritti, and L Mainville, and B E Jones
February 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Gritti, and L Mainville, and B E Jones
March 1991, Brain research bulletin,
I Gritti, and L Mainville, and B E Jones
April 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!