Emetic reflex arc revealed by expression of the immediate-early gene c-fos in the cat. 1994

A D Miller, and D A Ruggiero
Rockefeller University, New York, New York 10021.

The organization of the central neuronal circuitry that produces vomiting was explored by mapping the distribution of c-fos protein (Fos)-like immunoreactivity (FLI) as a monitor of functional activity. The brainstem and spinal cord were examined in cats administered multiple emetic drugs (cisplatin, lobeline, protoveratrine, naloxone, apomorphine) or control saline injections. Some animals were decerebrated, paralyzed, and artificially ventilated to avoid possible Fos expression induced by sensory feedback or fluid depletion during vomiting. Fictive vomiting was identified in these animals by a characteristic pattern of respiratory muscle nerve (phrenic and abdominal) coactivation. Tissues were immunoprocessed using an antibody raised against amino acids 1-131 of Fos and the avidin-biotin peroxidase complex method. Enhanced nuclear FLI was observed in experimental animals along portions of the sensorimotor emetic reflex arc, including the nodose ganglia, area postrema, nuclei of the solitary tract (especially medial and subpostrema subnuclei), intermediate reticular zone of the lateral tegmental field, nucleus retroambiguus, C2 inspiratory propriospinal cell region, and dorsal vagal and phrenic motor nuclei. Enhanced FLI was also detected in the raphe magnus, subretrofacial nucleus, and spinal dorsal horn. Regions showing no recognizable differences in FLI between experimental and control animals included the vestibular, cochlear, spinal trigeminal, subtrigeminal, and lateral reticular nuclei. Only minor differences were observed in the distributions of FLI between intact and decerebrate animals. No unique, well-defined group of labeled neurons that might function as a "vomiting center" could be identified. Instead, the pattern of c-fos expression suggests that neurons involved in coordinating the emetic response may radiate from the area postrema and nucleus of the solitary tract to an arc in the lateral tegmental field implicated in somato-autonomic integration.

UI MeSH Term Description Entries
D008120 Lobeline An alkaloid that has actions similar to NICOTINE on nicotinic cholinergic receptors but is less potent. It has been proposed for a variety of therapeutic uses including in respiratory disorders, peripheral vascular disorders, insomnia, and smoking cessation. Lobeline Sulfate,Smokeless,Sulfate, Lobeline
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011526 Protoveratrines Mixtures of closely related hypotensive alkaloids from Veratrum album (Liliaceae). They have been used in the treatment of hypertension but have largely been replaced by drugs with fewer adverse effects. Cryptenamine,Neoprotoveratrin,Protoverin,Veratetrin,Protalba,Protoveratrine A,Tensatrin,Veralba
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat

Related Publications

A D Miller, and D A Ruggiero
March 2003, Brain research. Molecular brain research,
A D Miller, and D A Ruggiero
August 1991, The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques,
A D Miller, and D A Ruggiero
May 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
A D Miller, and D A Ruggiero
July 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A D Miller, and D A Ruggiero
January 1998, Acta neurochirurgica. Supplement,
A D Miller, and D A Ruggiero
June 2008, Journal of neuroendocrinology,
Copied contents to your clipboard!