Ethanol stabilizes the open channel state of the Torpedo nicotinic acetylcholine receptor. 1994

G Wu, and P H Tonner, and K W Miller
Department of Anesthesia, Massachusetts General Hospital, Boston 02115.

Ethanol is known to cause a leftward shift of the acetylcholine concentration-response curve for channel opening of the nicotinic acetylcholine receptor (nAcChoR). However, it remains uncertain whether the mechanism underlying ethanol's effect is an increase in the binding affinity of the agonist to the receptor or an increase in the open/closed equilibrium for those receptors occupied by agonist. In the present study, this question was resolved by measuring the efflux of 86Rb+ over 9 msec from Torpedo vesicles after rapid mixing with the partial agonist suberyldicholine with or without ethanol as appropriate. Suberyldicholine's concentration-response curve is bell-shaped. Two actions underlie this bell-shaped curve, namely activation at low concentration (apparent dissociation constant for activation, Ka = 38 microM) and self-inhibition at higher concentration (apparent dissociation constant for inhibition, Kb = 9 mM), but the overlap of these two actions only reduces the maximum observable flux by 20%. Increasing ethanol concentration from 0 to 0.9 M causes: a linear increase in the maximum response of the nAcChoR to suberyldicholine from 5 to 80% of the maximum induced by acetylcholine, a moderate increase in Ka, and no change in Kb. Analysis of our results using the sequential two-site binding model revealed that the main action of ethanol on nAcChoR was to increase the fraction of occupied receptors that open. The equilibrium constant describing this effect changed by 8-fold at anesthetic concentrations. Ethanol also decreased the affinity of suberyldicholine for its self-inhibition site by a comparable amount, suggesting that its main action is to stabilize the open state. In addition, ethanol caused a small increase in suberyldicholine's affinity for the agonist site.

UI MeSH Term Description Entries
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012413 Rubidium An element that is an alkali metal. It has an atomic symbol Rb, atomic number 37, and atomic weight 85.47. It is used as a chemical reagent and in the manufacture of photoelectric cells.
D014101 Torpedo A genus of the Torpedinidae family consisting of several species. Members of this family have powerful electric organs and are commonly called electric rays. Electric Rays,Torpedinidae,Rays, Electric
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

G Wu, and P H Tonner, and K W Miller
January 1979, Progress in brain research,
G Wu, and P H Tonner, and K W Miller
September 2001, Molecular pharmacology,
G Wu, and P H Tonner, and K W Miller
February 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Wu, and P H Tonner, and K W Miller
October 1996, Neuroscience letters,
G Wu, and P H Tonner, and K W Miller
May 2008, Chembiochem : a European journal of chemical biology,
G Wu, and P H Tonner, and K W Miller
January 1997, Journal of receptor and signal transduction research,
G Wu, and P H Tonner, and K W Miller
January 1998, Journal of structural biology,
G Wu, and P H Tonner, and K W Miller
January 1995, Nature,
G Wu, and P H Tonner, and K W Miller
March 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G Wu, and P H Tonner, and K W Miller
January 2007, Neuroreport,
Copied contents to your clipboard!