Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. 1994

C L Chio, and M E Lajiness, and R M Huff
Upjohn Company, Kalamazoo, Michigan 49001.

Recombinant rat D3 dopamine receptors heterologously expressed in Chinese hamster ovary (CHO) cells are functionally coupled to endogenous G proteins. The affinity of the receptors for agonists is regulated by guanine nucleotides in the same manner as that of other G protein-linked receptors. The magnitude of the change in affinity induced by GTP is much less, however, than what is observed for recombinant rat D2 receptors expressed in CHO cells at similar densities. The striking difference is that the low affinity state (uncoupled D3 receptors) has a much higher affinity for agonists than does the low affinity state (uncoupled) of D2 receptors. Both receptors in the high affinity state (G protein coupled) have similar affinities for dopamine. Three functional responses result from activation of D3 or D2 receptors expressed in CHO cells. Both receptor subtypes mediate inhibition of adenylyl cyclase activity, increases in extracellular acidification rates that are prevented by removal of external Na+ and by amiloride analogs, and stimulation of cell division. However, these three functional results of D3 and D2 receptor activation are both quantitatively and qualitatively different. Dopamine activation of D3 receptors is always 2-5-fold less efficacious than dopamine activation of D2 receptors, despite similar densities of receptors. Both D3 and D2 receptor-mediated increases in extracellular acidification rates are blocked by pertussis toxin; however, the D3 response and not the D2 response is partially attenuated by membrane-soluble cAMP analogs. D3 and D2 receptor-mediated stimulation of mitogenesis is blocked by pertussis toxin and unaffected by cAMP analogs. The results show that D2 and D3 dopamine receptors mediate similar signaling events and are additional examples of G protein-linked receptors that can activate more than one pathway. Having functionally coupled D2 and D3 receptors expressed in the same cell type enabled determinations of agonist potencies at both D2 and D3 receptors. Comparison of the potencies at the two receptors reveals that none of the agonists is as selective for D3 receptors as was previously thought based on radioligand binding data.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008934 Mitogens Substances that stimulate mitosis and lymphocyte transformation. They include not only substances associated with LECTINS, but also substances from streptococci (associated with streptolysin S) and from strains of alpha-toxin-producing staphylococci. (Stedman, 25th ed) Mitogen,Phytomitogen,Phytomitogens
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C L Chio, and M E Lajiness, and R M Huff
August 1994, The Journal of pharmacology and experimental therapeutics,
C L Chio, and M E Lajiness, and R M Huff
December 2020, Scientific reports,
C L Chio, and M E Lajiness, and R M Huff
February 2002, Cellular and molecular neurobiology,
C L Chio, and M E Lajiness, and R M Huff
April 1997, Nihon shinkei seishin yakurigaku zasshi = Japanese journal of psychopharmacology,
C L Chio, and M E Lajiness, and R M Huff
February 2022, Brain imaging and behavior,
C L Chio, and M E Lajiness, and R M Huff
December 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C L Chio, and M E Lajiness, and R M Huff
April 1992, European journal of pharmacology,
C L Chio, and M E Lajiness, and R M Huff
December 1996, Biological psychiatry,
C L Chio, and M E Lajiness, and R M Huff
August 1997, Molecular pharmacology,
Copied contents to your clipboard!